Do you want to publish a course? Click here

Radio Astrometry Of The Triple Systems Algol And UX Arietis

84   0   0.0 ( 0 )
 Added by William Peterson
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have used multi-epoch long-baseline radio interferometry to determine the proper motion and orbital elements of Algol and UX Arietis, two radio-bright, close binary stellar systems with distant tertiary components. For Algol, we refine the proper motion and outer orbit solutions, confirming the recent result of Zavala et al. (2010) that the inner orbit is retrograde. The radio centroid closely tracks the motion of the KIV secondary. In addition, the radio morphology varies from double-lobed at low flux level to crescent-shaped during active periods. These results are most easily interpreted as synchrotron emission from a large, co-rotating meridional loop centered on the K-star. If this is correct, it provides a radio-optical frame tie candidate with an uncertainty {pm}0.5 mas. For UX Arietis, we find a outer orbit solution that accounts for previous VLBI observations of an acceleration term in the proper motion fit. The outer orbit solution is also consistent with previously published radial velocity curves and speckle observations of a third body. The derived tertiary mass, 0.75 solar masses, is consistent with the K1 main-sequence star detected spectroscopically. The inner orbit solution favors radio emission from the active K0IV primary only. The radio morphology, consisting of a single, partially resolved emission region, may be associated with the persistent polar spot observed using Doppler imaging.

rate research

Read More

189 - R. T. Zavala 2010
Interacting binaries typically have separations in the milli-arcsecond regime and hence it has been challenging to resolve them at any wavelength. However, recent advances in optical interferometry have improved our ability to discern the components in these systems and have now enabled the direct determination of physical parameters. We used the Navy Prototype Optical Interferometer to produce for the first time images resolving all three components in the well-known Algol triple system. Specifically, we have separated the tertiary component from the binary and simultaneously resolved the eclipsing binary pair, which represents the nearest and brightest eclipsing binary in the sky. We present revised orbital elements for the triple system, and we have rectified the 180-degree ambiguity in the position angle of Algol C. Our directly determined magnitude differences and masses for this triple star system are consistent with earlier light curve modeling results.
Algol (Beta Per) is an extensively studied hierarchical triple system whose inner pair is a prototype semi-detached binary with mass transfer occurring from the sub-giant secondary to the main-sequence primary. We present here the results of our Algol observations made between 2006 and 2010 at the CHARA interferometer with the Michigan Infrared Combiner in the H band. The use of four telescopes with long baselines allows us to achieve better than 0.5 mas resolution and to unambiguously resolve the three stars. The inner and outer orbital elements, as well as the angular sizes and mass ratios for the three components are determined independently from previous studies. We report a significantly improved orbit for the inner stellar pair with the consequence of a 15% change in the primary mass compared to previous studies. We also determine the mutual inclination of the orbits to be much closer to perpendicularity than previously established. State-of-the-art image reconstruction algorithms are used to image the full triple system. In particular an image sequence of 55 distinct phases of the inner pair orbit is reconstructed, clearly showing the Roche-lobe-filling secondary revolving around the primary, with several epochs corresponding to the primary and secondary eclipses.
(Abridged) Differential astrometry measurements from the Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES) are used to constrain the astrometric orbit of the previously known lesssim 2 day subsystem in the triple system 63 Gem A and have detected a previously unknown 2 year Keplerian wobble superimposed on the visual orbit of the much longer period (213 years) binary system HR 2896. The very small astrometric perturbation caused by the inner pair in 63 Gem A stretches the limits of current astrometric capabilities, but PHASES observations are able to constrain the orientation of the orbit. The two bright stars comprising the HR 2896 long period (213 year) system have a combined spectral type of K0III and the newly detected objects mass estimate places it in the regime of being a M dwarf. The motion of the stars are slow enough that their spectral features are always blended, preventing Doppler studies. The PHASES measurements and radial velocities (when available) have been combined with lower precision single-aperture measurements covering a much longer timeframe to improve the characterization of the long period orbits in both binaries. The visual orbits of the short and long period systems are presented for both systems, and used to calculate two possible values of the mutual inclinations between inner and outer orbits of 152 pm 12 degrees or a less likely value of 31 pm 11 degrees for 63 Gem A and 10.2 pm 2.4 degrees or 171.2 pm 2.8 degrees for HR 2896. The first is not coplanar, whereas the second is either nearly coplanar or anti-coplanar.
69 - Evan Abbuhl 2015
The close active binary HR 5110 was observed at six epochs over 26 days using a global VLBI array at 15.4~GHz. We used phase-referencing to determine the position of the radio centroid at each epoch with an uncertainty significantly smaller than the component separation. After correcting for proper motion and parallax, we find that the centroid locations of all six epochs have barycenter separations consistent with an emission source located on the KIV secondary, and not in an interaction region between the stars or on the F primary. We used a homogeneous power-law gyrosynchrotron emission model to reproduce the observed flux densities and fractional circular polarization. The resulting ranges of mean magnetic field strength and relativistic electron densities are of order 10 G and $10^5$ cm$^{-3}$ respectively in the source region.
We present new photometric observations of eclipsing binary systems V1241 Tau and GQ Dra. We use the following methodology: Initially, WD code is applied to the light curves, in order to determine the photometric elements of the systems. Then the residuals are analysed using Fourier Transformation techniques. The results show that one frequency can be barely attributed to the residual light variation of V1241 Tau, while there is no evidence of pulsation on the light curve of GQ Dra.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا