Do you want to publish a course? Click here

Intensity Mapping with Carbon Monoxide Emission Lines and the Redshifted 21 cm Line

159   0   0.0 ( 0 )
 Added by Adam Lidz
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We quantify the prospects for using emission lines from rotational transitions of the CO molecule to perform an `intensity mapping observation at high redshift during the Epoch of Reionization (EoR). The aim of CO intensity mapping is to observe the combined CO emission from many unresolved galaxies, to measure the spatial fluctuations in this emission, and use this as a tracer of large scale structure at very early times in the history of our Universe. This measurement would help determine the properties of molecular clouds -- the sites of star formation -- in the very galaxies that reionize the Universe. We further consider the possibility of cross-correlating CO intensity maps with future observations of the redshifted 21 cm line. The cross spectrum is less sensitive to foreground contamination than the auto power spectra, and can therefore help confirm the high redshift origin of each signal. Furthermore, the cross spectrum measurement would help extract key information about the EoR, especially regarding the size distribution of ionized regions. We discuss uncertainties in predicting the CO signal at high redshift, and discuss strategies for improving these predictions. Under favorable assumptions, and feasible specifications for a CO survey mapping the CO(2-1) and CO(1-0) lines, the power spectrum of CO emission fluctuations and its cross spectrum with future 21 cm measurements from the MWA are detectable at high significance.



rate research

Read More

The 21-cm and Lyman Alpha lines are the dominant line-emission spectral features at opposite ends of the spectrum of hydrogen. Each line can be used to create three dimensional intensity maps of large scale structure. The sky brightness at low redshift due to Lyman Alpha emission is estimated to be 0.4 Jy/Steradian, which is brighter than the zodiacal light foreground.
Using the 21 cm line, observed all-sky and across the redshift range from 0 to 5, the large scale structure of the Universe can be mapped in three dimensions. This can be accomplished by studying specific intensity with resolution ~ 10 Mpc, rather than via the usual galaxy redshift survey. The data set can be analyzed to determine Baryon Acoustic Oscillation wavelengths, in order to address the question: What is the nature of Dark Energy? In addition, the study of Large Scale Structure across this range addresses the questions: How does Gravity effect very large objects? and What is the composition our Universe? The same data set can be used to search for and catalog time variable and transient radio sources.
The 21-cm line of neutral hydrogen (HI) opens a new avenue in our exploration of the Universes structure and evolution. It provides complementary data with different systematics, which aim to improve our current understanding of the $Lambda$CDM model. Among several radio cosmological surveys designed to measure this line, BINGO is a single dish telescope mainly designed to detect Baryon Acoustic Oscillations (BAO) at low redshifts ($0.127 < z < 0.449$). Our goal is to assess the capabilities of the fiducial BINGO setup to constrain the cosmological parameters and analyse the effect of different instrument configurations. We will use the 21-cm angular power spectra to extract information about the HI signal and the Fisher matrix formalism to study BINGO projected constraining power. We use the Phase 1 fiducial configuration of the BINGO telescope to perform our cosmological forecasts. In addition, we investigate the impact of several instrumental setups and different cosmological models. Combining BINGO with Planck temperature and polarization data, we project a $1%$ and a $3%$ precision measurement at $68%$ CL for the Hubble constant and the dark energy (DE) equation of state (EoS), respectively, within the wCDM model. Assuming a CPL parametrization, the EoS parameters have standard deviations given by $sigma_{w_0} = 0.30$ and $sigma_{w_a} = 1.2$. We find that BINGO can also help breaking degeneracies in alternative models, which improves the cosmological constraints significantly. Moreover, we can access information about the HI density and bias, obtaining $sim 8.5%$ and $sim 6%$ precision, respectively, assuming they vary with redshift at three independent bins. The fiducial BINGO configuration will be able to extract significant information from the HI distribution and provide constraints competitive with current and future cosmological surveys. (Abridged)
220 - Jonathan C. Pober 2014
The highly redshifted 21 cm line of neutral hydrogen has become recognized as a unique probe of cosmology from relatively low redshifts (z ~ 1) up through the Epoch of Reionization (z ~ 8) and even beyond. To date, most work has focused on recovering the spherically averaged power spectrum of the 21 cm signal, since this approach maximizes the signal-to-noise in the initial measurement. However, like galaxy surveys, the 21 cm signal is affected by redshift space distortions, and is inherently anisotropic between the line-of-sight and transverse directions. A measurement of this anisotropy can yield unique cosmological information, potentially even isolating the matter power spectrum from astrophysical effects. However, in interferometric measurements, foregrounds also have an anisotropic footprint between the line-of-sight and transverse directions: the so-called foreground wedge. Although foreground subtraction techniques are actively being developed, a foreground avoidance approach of simply ignoring contaminated modes has arguably proven most successful to date. In this work, we analyze the effect of this foreground anisotropy in recovering the redshift space distortion signature in 21 cm measurements at both high and intermediate redshifts. We find the foreground wedge corrupts nearly all of the redshift space signal for even the largest proposed EoR experiments (HERA and the SKA), making cosmological information unrecoverable without foreground subtraction. The situation is somewhat improved at lower redshifts, where the redshift-dependent mapping from observed coordinates to cosmological coordinates significantly reduces the size of the wedge. Using only foreground avoidance, we find that a large experiment like CHIME can place non-trivial constraints on cosmological parameters.
99 - Ming Zhang , Bo Wang , Peng-Ju Wu 2021
We forecast constraints on cosmological parameters in the interacting dark energy models using the mock data generated for neutral hydrogen intensity mapping (IM) experiments. In this work, we only consider the interacting dark energy models with energy transfer rate $Q=beta Hrho_{rm c}$, and take BINGO, FAST, SKA1-MID, and Tianlai as typical examples of the 21 cm IM experiments. We find that the Tianlai cylinder array will play an important role in constraining the interacting dark energy model. Assuming perfect foreground removal and calibration, and using the Tianlai-alone data, we obtain $sigma(H_0)=0.19$ km s$^{-1}$ Mpc$^{-1}$, $sigma(Omega_{rm m})=0.0033$ and $sigma(sigma_8)=0.0033$ in the I$Lambda$CDM model, which are much better than the results of Planck+optical BAO (i.e. optical galaxy surveys). However, the Tianlai-alone data cannot provide a very tight constraint on the coupling parameter $beta$ compared with Planck+optical BAO, while the Planck+Tianlai data can give a rather tight constraint of $sigma(beta)=0.00023$ due to the parameter degeneracies being well broken by the data combination. In the I$w$CDM model, we obtain $sigma(beta)=0.00079$ and $sigma(w)=0.013$ from Planck+Tianlai. In addition, we also make a detailed comparison among BINGO, FAST, SKA1-MID, and Tianlai in constraining the interacting dark energy models. We show that future 21 cm IM experiments will provide a useful tool for exploring the nature of dark energy and play a significant role in measuring the coupling between dark energy and dark matter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا