On the Dynamics of solitons in the nonlinear Schroedinger equation


Abstract in English

We study the behavior of the soliton solutions of the equation i((partial{psi})/(partialt))=-(1/(2m)){Delta}{psi}+(1/2)W_{{epsilon}}({psi})+V(x){psi} where W_{{epsilon}} is a suitable nonlinear term which is singular for {epsilon}=0. We use the strong nonlinearity to obtain results on existence, shape, stability and dynamics of the soliton. The main result of this paper (Theorem 1) shows that for {epsilon}to0 the orbit of our soliton approaches the orbit of a classical particle in a potential V(x).

Download