Do you want to publish a course? Click here

The standard model of low-mass star formation applied to massive stars: multi-wavelength modelling of IRAS 20126+4104

124   0   0.0 ( 0 )
 Added by Katharine Johnston
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

In order to investigate whether massive stars form similarly to their low-mass counterparts, we have used the standard envelope plus disc geometry successfully applied to low-mass protostars to model the near-IR to sub-millimetre SED and several mid-IR images of the embedded massive star IRAS20126+4104. We have used a Monte Carlo radiative transfer dust code to model the continuum absorption, emission and scattering through two azimuthally symmetric dust geometries, the first consisting of a rotationally flattened envelope with outflow cavities, and the second which also includes a flared accretion disc. Our results show that the envelope plus disc model reproduces the observed SED and images more accurately than the model without a disc, although the latter model more closely reproduces the morphology of the mid-IR emission within a radius of 1.1 or ~1800au. We have put forward several possible causes of this discontinuity, including inner truncation of the disc due to stellar irradiation, or precession of the outflow cavity. Our best fitting envelope plus disc model has a disc radius of 9200 au. We find that it is unlikely that the outer regions of such a disc would be in hydrostatic or centrifugal equilibrium, however we calculate that the temperatures within the disc would keep it stable to fragmentation.



rate research

Read More

This paper aims to investigate the hypothesis that the embedded luminous star AFGL2591-VLA3 (2.3E5Lsun at 3.33kpc) is forming according to a scaled-up version of a low-mass star formation scenario. We present multi-configuration VLA 3.6cm and 7mm, as well as CARMA C18O and 3mm continuum observations to investigate the morphology and kinematics of the ionized gas, dust, and molecular gas around AFGL2591. We also compare our results to ancillary near-IR images, and model the SED and 2MASS image profiles of AFGL2591 using a dust continuum radiative transfer code. The observed 3.6cm images uncover for the first time that the central powering source AFGL2591-VLA3 has a compact core plus collimated jet morphology, extending 4000AU eastward from the central source with an opening angle of <10deg at this radius. However, at 7mm VLA3 does not show a jet morphology, but instead compact (<500AU) emission, some of which (<0.57 mJy of 2.9mJy) is estimated to be from dust. We determine that the momentum rate of the jet is not sufficient to ionize itself via only shocks, and thus a significant portion of the emission is instead likely created in a photoionized wind. The C18O emission uncovers dense entrained material in the outflow(s) from the young stars in the region. The main features of the SED and 2MASS images of AFGL2591-VLA3 are also reproduced by our model dust geometry of a rotationally flattened envelope with and without a disk. The above results are consistent with a picture of massive star formation similar to that seen for low-mass protostars. However, within its envelope, AFGL2591-VLA3 contains at least four other young stars, constituting a small cluster. Therefore it appears that AFGL2591-VLA3 may be able to source its accreting material from a shared gas reservoir while still exhibiting the phenomena expected during the formation of low-mass stars. (Abridged)
We present results of Chandra ACIS-I and Karl G. Jansky Very Large Array (VLA) 6 cm continuum observations of the IRAS 20126+4104 massive star forming region. We detect 150 X-ray sources within the 17 arcmin x 17 arcmin ACIS-I field, and a total of 13 radio sources within the 9.2 primary beam at 4.9 GHz. Among these are the first 6 cm detections of the central sources reported by Hofner et al. (2007), namely I20N1, I20S, and I20var. A new variable radio sources is also reported. Searching the 2MASS archive we identified 88 NIR counterparts to the X-ray sources. Only 4 of the X-ray sources had 6 cm counterparts. Based on an NIR color-color analysis, and on the Besancon simulation of Galactic stellar populations (Robin et al. 2003), we estimate that about 90 X-ray sources are associated with this massive star forming region. We detect an increasing surface density of X-ray sources toward the massive protostar and infer the presence of a cluster of at least 46 YSOs within a distance of 1.2 pc from the massive protostar.
We present new spectral line observations of the CH3CN molecule in the accretion disk around the massive protostar IRAS 20126+4104 with the Submillimeter Array that for the first time measure the disk density, temperature, and rotational velocity with sufficient resolution (0.37, equivalent to ~600 AU) to assess the gravitational stability of the disk through the Toomre-Q parameter. Our observations resolve the central 2000 AU region that shows steeper velocity gradients with increasing upper state energy, indicating an increase in the rotational velocity of the hotter gas nearer the star. Such spin-up motions are characteristics of an accretion flow in a rotationally supported disk. We compare the observed data with synthetic image cubes produced by three-dimensional radiative transfer models describing a thin flared disk in Keplerian motion enveloped within the centrifugal radius of an angular-momentum-conserving accretion flow. Given a luminosity of 1.3x10^4 Lsun, the optimized model gives a disk mass of 1.5 Msun and a radius of 858 AU rotating about a 12.0 Msun protostar with a disk mass accretion rate of 3.9x10^{-5} Msun/yr. Our study finds that, in contrast to some theoretical expectations, the disk is hot and stable to fragmentation with Q > 2.8 at all radii which permits a smooth accretion flow. These results put forward the first constraints on gravitational instabilities in massive protostellar disks, which are closely connected to the formation of companion stars and planetary systems by fragmentation.
We measured polarized dust emission at 350um towards the high-mass star forming massive dense clump IRAS 20126+4104 using the SHARC II Polarimeter, SHARP, at the Caltech Submillimeter Observatory. Most of the observed magnetic field vectors agree well with magnetic field vectors obtained from a numerical simulation for the case when the global magnetic field lines are inclined with respect to the rotation axis of the dense clump. The results of the numerical simulation show that rotation plays an important role on the evolution of the massive dense clump and its magnetic field. The direction of the cold CO 1-0 bipolar outflow is parallel to the observed magnetic field within the dense clump as well as the global magnetic field, as inferred from optical polarimetry data, indicating that the magnetic field also plays a critical role in an early stage of massive star formation. The large-scale Keplerian disk of the massive (proto)star rotates in almost opposite sense to the clumps envelope. The observed magnetic field morphology and the counter-rotating feature of the massive dense clump system provide hints to constrain the role of magnetic fields in the process of high mass star formation.
204 - Jin-Long Xu , Jun-Jie Wang , 2011
We present Submillimeter Array observations of the massive star-forming region IRAS 20126+4104 in the millimeter continuum and in several molecular line transitions. With the SMA data, we have detected nine molecular transitions, including DCN, CH3OH, H2CO, and HC3N molecules, and imaged each molecular line. From the 1.3 mm continuum emission a compact millimeter source is revealed, which is also associated with H2O, OH, and CH3OH masers. Using a rotation temperature diagram (RTD), we derive that the rotational temperature and the column density of CH3OH are 200 K and 3.7times 1017 cm-2, respectively. The calculated results and analysis further indicate that a hot core coincides with IRAS 20126+4104. The position-velocity diagrams of H2CO 3(0,3)-2(0,2) and HC3N 25-24 clearly present Keplerian rotation. Moreover, H2CO 3(0,3)-2(0,2) is found to trace the disk rotation for the first time.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا