No Arabic abstract
The electronic structure of low-density n-type SrTiO3 delta-doped heterostructures is investigated by angular dependent Shubnikov-de Haas oscillations. In addition to a controllable crossover from a three- to two-dimensional Fermi surface, clear beating patterns for decreasing dopant layer thicknesses are found. These indicate the lifting of the degeneracy of the conduction band due to subband quantization in the two-dimensional limit. Analysis of the temperature-dependent oscillations shows that similar effective masses are found for all components, associated with the splitting of the light electron pocket. The dimensionality crossover in the superconducting state is found to be distinct from the normal state, resulting in a rich phase diagram as a function of dopant layer thickness.
We introduce a simple but powerful zero temperature Stoner model to explain the unusual phase diagram of the ferromagnetic superconductor, UGe2. Triplet superconductivity is driven in the ferromagnetic phase by tuning the majority spin Fermi level through one of two peaks in the paramagnetic density of states (DOS). Each peak is associated with a metamagnetic jump in magnetisation. The twin peak DOS may be derived from a tight-binding, quasi-one-dimensional bandstructure, inspired by previous bandstructure calculations.
The evolution from an anomalous metallic phase to a Mott insulator within the two-dimensional Hubbard model is investigated by means of the Cellular Dynamical Mean-Field Theory. We show that the density-driven Mott metal-insulator transition is approached in a non-uniform way in different regions of the momentum space. This gives rise to a breakup of the Fermi surface and to the formation of hot and cold regions, whose position depends on the hole or electron like nature of the carriers in the system.
We show that, at weak to intermediate coupling, antiferromagnetic fluctuations enhance d-wave pairing correlations until, as one moves closer to half-filling, the antiferromagnetically-induced pseudogap begins to suppress the tendency to superconductivity. The accuracy of our approach is gauged by detailed comparisons with Quantum Monte Carlo simulations. The negative pressure dependence of Tc and the existence of photoemission hot spots in electron-doped cuprate superconductors find their natural explanation within this approach.
High resolution angle resolved photoemission data from Pb doped Bi_2Sr_2CaCu_2O_8 (Bi2212) with suppressed superstructure is presented. Improved resolution and very high momentum space sampling at various photon energies reveal the presence of two Fermi surface pieces. One has the hole-like topology, while the other one has its van Hove singularity very close to (pi,0), its topology at some photon energies resembles the electron-like piece. This result provides a unifying picture of the Fermi surface in the Bi2212 compound and reconciles the conflicting reports.
The discovery of a two-dimensional (2D) electron gas at the (110)-oriented LaAlO3/SrTiO3 in- terface provided us with the opportunity to probe the effect of crystallographic orientation and the ensuing electronic reconstructions on interface properties beyond the conventional (001)-orientation. At temperatures below 200 mK, we have measured 2D superconductivity with a spatial extension significantly larger (d approx. 24 - 30 nm) than previously reported for (001)-oriented LaAlO3/SrTiO3 interfaces (d approx. 10 nm). The more extended superconductivity brings about the absence of violation of the Pauli paramagnetic limit for the upper critical fields, signaling the distinctive nature of the electronic structure of the (110)-oriented interface with respect to their (001)-counterparts