Do you want to publish a course? Click here

Formation and Evolution of the Disk System of the Milky Way: [alpha/Fe] Ratios and Kinematics of the SEGUE G-Dwarf Sample

241   0   0.0 ( 0 )
 Added by Young Sun Lee
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We employ measurements of the [alpha/Fe] ratio derived from low-resolution (R~2000) spectra of 17,277 G-type dwarfs from the SEGUE survey to separate them into likely thin- and thick-disk subsamples. Both subsamples exhibit strong gradients of orbital rotational velocity with metallicity, of opposite signs, -20 to -30 km/s/dex for the thin-disk and +40 to +50 km/s/dex for the thick-disk population. The rotational velocity is uncorrelated with Galactocentric distance for the thin-disk subsample, and exhibits a small trend for the thick-disk subsample. The rotational velocity decreases with distance from the plane for both disk components, with similar slopes (-9.0 {pm} 1.0 km/s/kpc). Thick-disk stars exhibit a strong trend of orbital eccentricity with metallicity (about -0.2/dex), while the eccentricity does not change with metallicity for the thin-disk subsample. The eccentricity is almost independent of Galactocentric radius for the thin-disk population, while a marginal gradient of the eccentricity with radius exists for the thick-disk population. Both subsamples possess similar positive gradients of eccentricity with distance from the Galactic plane. The shapes of the eccentricity distributions for the thin- and thick-disk populations are independent of distance from the plane, and include no significant numbers of stars with eccentricity above 0.6. Among several contemporary models of disk evolution we consider, radial migration appears to have played an important role in the evolution of the thin-disk population, but possibly less so for the thick disk, relative to the gas-rich merger or disk heating scenarios. We emphasize that more physically realistic models and simulations need to be constructed in order to carry out the detailed quantitative comparisons that our new data enable.



rate research

Read More

We map the stellar structure of the Galactic thick disk and halo by applying color-magnitude diagram (CMD) fitting to photometric data from the SEGUE survey, allowing, for the first time, a comprehensive analysis of their structure at both high and low latitudes using uniform SDSS photometry. Incorporating photometry of all relevant stars simultaneously, CMD fitting bypasses the need to choose single tracer populations. Using old stellar populations of differing metallicities as templates we obtain a sparse 3D map of the stellar mass distribution at |Z|>1 kpc. Fitting a smooth Milky Way model comprising exponential thin and thick disks and an axisymmetric power-law halo allows us to constrain the structural parameters of the thick disk and halo. The thick-disk scale height and length are well constrained at 0.75+-0.07 kpc and 4.1+-0.4 kpc, respectively. We find a stellar halo flattening within ~25 kpc of c/a=0.88+-0.03 and a power-law index of 2.75+-0.07 (for 7<R_{GC}<~30 kpc). The model fits yield thick-disk and stellar halo densities at the solar location of rho_{thick,sun}=10^{-2.3+-0.1} M_sun pc^{-3} and rho_{halo,sun}=10^{-4.20+-0.05} M_sun pc^{-3}, averaging over any substructures. Our analysis provides the first clear in situ evidence for a radial metallicity gradient in the Milky Ways stellar halo: within R<~15 kpc the stellar halo has a mean metallicity of [Fe/H]=-1.6, which shifts to [Fe/H]=-2.2 at larger radii. Subtraction of the best-fit smooth and symmetric model from the overall density maps reveals a wealth of substructures at all latitudes, some attributable to known streams and overdensities, and some new. A simple warp cannot account for the low latitude substructure, as overdensities occur simultaneously above and below the Galactic plane. (abridged)
Using a sample of red giant stars from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) Data Release 16, we infer the conditional distribution $p([alpha/text{Fe}],|,[text{Fe/H}])$ in the Milky Way disk for the $alpha$-elements Mg, O, Si, S, and Ca. In each bin of [Fe/H] and Galactocentric radius $R$, we model $p([alpha/text{Fe}])$ as a sum of two Gaussians, representing low-$alpha$ and high-$alpha$ populations with scale heights $z_1=0.45,text{kpc}$ and $z_2=0.95,text{kpc}$, respectively. By accounting for age-dependent and $z$-dependent selection effects in APOGEE, we infer the [$alpha$/Fe] distributions that would be found for a fair sample of long-lived stars covering all $z$. Near the Solar circle, this distribution is clearly bimodal at sub-solar [Fe/H], with the low-$alpha$ and high-$alpha$ peaks separated by a valley that is $sim 3$ times lower. In agreement with previous results, we find that the high-$alpha$ population is more prominent at smaller $R$, lower [Fe/H], and larger $|z|$, and that the sequence separation is smaller for Si and Ca than for Mg, O, and S. We find significant intrinsic scatter in [$alpha$/Fe] at fixed [Fe/H] for both the low-$alpha$ and high-$alpha$ populations, typically $sim 0.04$-dex. The means, dispersions, and relative amplitudes of this two-Gaussian description, and the dependence of these parameters on $R$, [Fe/H], and $alpha$-element, provide a quantitative target for chemical evolution models and a test for hydrodynamic simulations of disk galaxy formation. We argue that explaining the observed bimodality will probably require one or more sharp transitions in the disks gas accretion, star formation, or outflow history in addition to radial mixing of stellar populations.
142 - Constance Rockosi 2009
The history of the Milky Way is encoded in the spatial distributions, kinematics, and chemical enrichment patterns of its resolved stellar populations. SEGUE-2 and APOGEE, two of the four surveys that comprise SDSS-III (the Sloan Digital Sky Survey III), will map these distributions and enrichment patterns at optical and infrared wavelengths, respectively. Using the existing SDSS spectrographs, SEGUE-2 will obtain spectra of 140,000 stars in selected high-latitude fields to a magnitude limit r ~ 19.5, more than doubling the sample of distant halo stars observed in the SDSS-II survey SEGUE (the Sloan Extension for Galactic Understanding and Exploration). With spectral resolution R ~ 2000 and typical S/N per pixel of 20-25, SEGUE and SEGUE-2 measure radial velocities with typical precision of 5-10 km/s and metallicities ([Fe/H]) with a typical external error of 0.25 dex. APOGEE (the Apache Point Observatory Galactic Evolution Experiment) will use a new, 300-fiber H-band spectrograph (1.5-1.7 micron) to obtain high-resolution (R ~ 24,000), high signal-to-noise ratio (S/N ~ 100 per pixel) spectra of 100,000 red giant stars to a magnitude limit H ~ 12.5. Infrared spectroscopy penetrates the dust that obscures the inner Galaxy from our view, allowing APOGEE to carry out the first large, homogeneous spectroscopic survey of all Galactic stellar populations. APOGEE spectra will allow radial velocity measurements with < 0.5 km/s precision and abundance determinations (with ~ 0.1 dex precision) of 15 chemical elements for each program star, which can be used to reconstruct the history of star formation that produced these elements. (abridged)
We present the metallicity distribution function (MDF) for 24,270 G and 16,847 K dwarfs at distances from 0.2 to 2.3 kpc from the Galactic plane, based on spectroscopy from the Sloan Extension for Galactic Understanding and Exploration (SEGUE) survey. This stellar sample is significantly larger in both number and volume than previous spectroscopic analyses, which were limited to the solar vicinity, making it ideal for comparison with local volume-limited samples and Galactic models. For the first time, we have corrected the MDF for the various observational biases introduced by the SEGUE target selection strategy. The SEGUE sample is particularly notable for K dwarfs, which are too faint to examine spectroscopically far from the solar neighborhood. The MDF of both spectral types becomes more metal-poor with increasing |Z|, which reflects the transition from a sample with small [alpha/Fe] values at small heights to one with enhanced [alpha/Fe] above 1 kpc. Comparison of our SEGUE distributions to those of two different Milky Way models reveals that both are more metal-rich than our observed distributions at all heights above the plane. Our unbiased observations of G and K dwarfs provide valuable constraints over the |Z|-height range of the Milky Way disk for chemical and dynamical Galaxy evolution models, previously only calibrated to the solar neighborhood, with particular utility for thin- and thick-disk formation models.
The Milky Way disk consists of two prominent components - a thick, alpha-rich, low-metallicity component and a thin, metal-rich, low-alpha component. External galaxies have been shown to contain thin and thick disk components, but whether distinct components in the [$alpha$/Fe]-[Z/H] plane exist in other Milky Way-like galaxies is not yet known. We present VLT-MUSE observations of UGC 10738, a nearby, edge-on Milky Way-like galaxy. We demonstrate through stellar population synthesis model fitting that UGC 10738 contains alpha-rich and alpha-poor stellar populations with similar spatial distributions to the same components in the Milky Way. We discuss how the finding that external galaxies also contain chemically distinct disk components may act as a significant constraint on the formation of the Milky Ways own thin and thick disk.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا