Do you want to publish a course? Click here

Temperature-dependent properties of the magnetic order in single-crystal BiFeO3

131   0   0.0 ( 0 )
 Added by Mehmet Ramazanoglu
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report neutron diffraction and magnetization studies of the magnetic order in multiferroic BiFeO3. In ferroelectric monodomain single crystals, there are three magnetic cycloidal domains with propagation vectors equivalent by crystallographic symmetry. The cycloid period slowly grows with increasing temperature. The magnetic domain populations do not change with temperature except in the close vicinity of the N{P}eel temperature, at which, in addition, a small jump in magneti- zation is observed. No evidence for the spin-reorientation transitions proposed in previous Raman and dielectric studies is found. The magnetic cycloid is slightly anharmonic for T=5 K. The an- harmonicity is much smaller than previously reported in NMR studies. At room temperature, a circular cycloid is observed, within errors. We argue that the observed anharmonicity provides important clues for understanding electromagnons in BiFeO3.



rate research

Read More

We report the observation of field-induced magnetization of BiFeO3 (BFO) in an ultrathin BFO/La0.7Sr0.3MnO3 (LSMO) superlattice using polarized neutron reflectivity (PNR). Our PNR results indicate parallel alignment of magnetization across BFO/LSMO interfaces. The study showed an increase in average magnetization on increasing applied magnetic field at 10K. We observed a saturation magnetization of 110 pm 15 kA/m (~0.8 {mu}B/Fe) for ultrathin BFO layer (~2 unit cell) sandwiched between ultrathin LSMO layers (~ 2 unit cell), which is much higher than the canted moment (0.03 {mu}B/Fe) in the bulk BFO. The macroscopic VSM results on superlattice clearly indicate superparamagnetic behavior typically observed in nanoparticles of manganites.
220 - J. H. Kim , S. J. Kim , C. I. Lee 2009
We grew the single crystal of stoichiometric Tm5Si2.0Ge2.0 using a Bridgeman method and performed XRD, EDS, magnetization, ac and dc magnetic susceptibilities, specific heat, electrical resistivity and XPS experiments. It crystallizes in orthorhombic Sm5Ge4-type structure. The mean valence of Tm ions in Tm5Si2.0Ge2.0 is almost trivalent. The 4f states is split by the crystalline electric field. The ground state exhibits the long range antiferromagnetic order with the ferromagnetically coupled magnetic moments in the ac plane below 8.01 K, while the exited states exhibit the reduction of magnetic moment and magnetic entropy and -log T-behaviors observed in Kondo materials.
330 - Surjeet Singh 2007
We have successfully grown cm3-size single crystals of the metallic-ferromagnet Sm2Mo2O7 by the floating-zone method using an infrared-red image furnace. The growth difficulties and the remedies found using a 2-mirror image furnace are discussed. Magnetization studies along the three crystalline axes of the compound are presented and discussed based on our recent proposal of an ordered spin-ice ground state for this compound
Electrical resistivity ($rho$), magnetoresistance (MR), magnetization, thermopower and Hall effect measurements on the single crystal Gd$_{2}$PdSi$_3$, crystallizing in an AlB$_2$-derived hexagonal structure are reported. The well-defined minimum in $rho$ at a temperature above Neel temperature (T$_N$= 21 K) and large negative MR below $sim$ 3T$_N$, reported earlier for the polycrystals, are reproducible even in single crystals. Such features are generally uncharacteristic of Gd alloys. In addition, we also found interesting features in other data, e.g., two-step first-order-like metamagnetic transitions for the magnetic field along [0001] direction. The alloy exhibits anisotropy in all these properties, though Gd is a S-state ion.
Single crystal of CeAl has been grown by flux method using Ce-Al self-flux. Several needle like single crystals were obtained and the length of the needle corresponds to the [001] crystallographic direction. Powder x-ray diffraction revealed that CeAl crystallizes in orthorhombic CrB-type structure with space group ${Cmcm}$ (no. 63). The magnetic properties have been investigated by means of magnetic susceptibility, isothermal magnetization, electrical transport, and heat capacity measurements. CeAl is found to order antiferromagnetically with a N$grave{rm e}$el temperature $T_{rm N}$ = 10K. The magnetization data below the ordering temperature reveals two metamagentic transitions for fields less than 20kOe. From the inverse magnetic susceptibility an effective moment of $2.66mu_{rm B}$/Ce has been estimated, which indicates that Ce is in its trivalent state. Electrical resistivity data clearly shows a sharp drop at 10K due to the reduction of spin disorder scattering of conduction electrons thus confirming the magnetic ordering. The estimated residual resistivity ratio (RRR) is 33, thus indicating a good quality of the single crystal. The bulk nature of the magnetic ordering is also confirmed by heat capacity data. From the Schottky anomaly of the heat capacity we have estimated the crystal field level splitting energies of the $(2J+1)$ degenerate ground state as 25K and 175K respectively for the fist and second excited states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا