Do you want to publish a course? Click here

On Hoyle-Narlikar-Wheeler mechanism of vibration energy powered magneto-dipole emission of neutron stars

67   0   0.0 ( 0 )
 Added by Sergey Bastrukov
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We revisit the well-known Hoyle-Narlikar-Wheeler proposition that neutron star emerging in the magnetic-flux-conserving process of core-collapse supernova can convert the stored energy of Alfven vibrations into power of magneto-dipole radiation. We show that the necessary requirement for the energy conversion is the decay of internal magnetic field. In this case the loss of vibration energy of the star causes its vibration period, equal to period of pulsating emission, to lengthen at a rate proportional to the rate of magnetic field decay. These prediction of the model of vibration powered neutron star are discussed in juxtaposition with data on pulsating emission of magnetars whose radiative activity is generally associated with the decay of ultra strong magnetic field.



rate research

Read More

It is shown that depletion of the magnetic field pressure in a quaking neutron star undergoing Lorentz-force-driven torsional seismic vibrations about axis of its dipole magnetic moment is accompanied by the loss of vibration energy of the star that causes its vibration period to lengthen at a rate proportional to the rate of magnetic field decay. Highlighted is the magnetic-field-decay induced conversion of the energy of differentially rotational Alfven vibrations into the energy of oscillating magneto-dipole radiation. A set of representative examples of magnetic field decay illustrating the vibration energy powered emission with elongating periods produced by quaking neutron star are considered and discussed in the context of theory of magnetars.
Detection of electromagnetic counterparts of gravitational wave (GW) sources is important to unveil the nature of compact binary coalescences. We perform three-dimensional, time-dependent, multi-frequency radiative transfer simulations for radioactively powered emission from the ejecta of black hole (BH) - neutron star (NS) mergers. Depending on the BH to NS mass ratio, spin of the BH, and equations of state of dense matter, BH-NS mergers can eject more material than NS-NS mergers. In such cases, radioactively powered emission from the BH-NS merger ejecta can be more luminous than that from NS-NS mergers. We show that, in spite of the expected larger distances to BH-NS merger events, observed brightness of BH-NS mergers can be comparable to or even higher than that of NS-NS mergers. We find that, when the tidally disrupted BH-NS merger ejecta are confined to a small solid angle, the emission from BH-NS merger ejecta tends to be bluer than that from NS-NS merger ejecta for a given total luminosity. Thanks to this property, we might be able to distinguish BH-NS merger events from NS-NS merger events by multi-band observations of the radioactively powered emission. In addition to the GW observations, such electromagnetic observations can potentially provide independent information on the nature of compact binary coalescences.
We revisit the population synthesis of isolated radio-pulsars incorporating recent advances on the evolution of the magnetic field and the angle between the magnetic and rotational axes from new simulations of the magneto-thermal evolution and magnetosphere models, respectively. An interesting novelty in our approach is that we do not assume the existence of a death line. We discuss regions in parameter space that are more consistent with the observational data. In particular, we find that any broad distribution of birth spin periods with $P_0lesssim 0.5$ s can fit the data, and that if the alignment angle is allowed to vary consistently with the torque model, realistic magnetospheric models are favoured compared to models with classical magneto-dipolar radiation losses. Assuming that the initial magnetic field is given by a lognormal distribution, our optimal model has mean strength $langlelog B_0{rm [G]}rangle approx 13.0-13.2$ with width $sigma (log B_0) = 0.6-0.7$. However, there are strong correlations between parameters. This degeneracy in the parameter space can be broken by an independent estimate of the pulsar birth rate or by future studies correlating this information with the population in other observational bands (X-rays and $gamma$-rays).
Neutron stars harbour extremely strong magnetic fields within their solid outer crust. The topology of this field strongly influences the surface temperature distribution, and hence the stars observational properties. In this work, we present the first realistic simulations of the coupled crustal magneto-thermal evolution of isolated neutron stars in three dimensions with account for neutrino emission, obtained with the pseudo-spectral code Parody. We investigate both the secular evolution, especially in connection with the onset of instabilities during the Hall phase, and the short-term evolution following episodes of localised energy injection. Simulations show that a resistive tearing instability develops in about a Hall time if the initial toroidal field exceeds ~$10^{15}$ G. This leads to crustal failures because of the huge magnetic stresses coupled with the local temperature enhancement produced by dissipation. Localised heat deposition in the crust results in the appearance of hot spots on the star surface which can exhibit a variety of patterns. Since the transport properties are strongly influenced by the magnetic field, the hot regions tend to drift away and get deformed following the magnetic field lines while cooling. The shapes obtained with our simulations are reminiscent of those recently derived from NICER X-ray observations of the millisecond pulsar PSR J0030+0451.
We study the mutual influence of thermal and magnetic evolution in a neutron stars crust in axial symmetry. Taking into account realistic microphysical inputs, we find the heat released by Joule effect consistent with the circulation of currents in the crust, and we incorporate its effects in 2D cooling calculations. We solve the induction equation numerically using a hybrid method (spectral in angles, but a finite--differences scheme in the radial direction), coupled to the thermal diffusion equation. We present the first long term 2D simulations of the coupled magneto-thermal evolution of neutron stars. This substantially improves previous works in which a very crude approximation in at least one of the parts (thermal or magnetic diffusion) has been adopted. Our results show that the feedback between Joule heating and magnetic diffusion is strong, resulting in a faster dissipation of the stronger fields during the first million years of a NSs life. As a consequence, all neutron stars born with fields larger than a critical value (about 5 10^13 G) reach similar field strengths (approximately 2-3 10^{13} G) at late times. Irrespectively of the initial magnetic field strength, after $10^6$ years the temperature becomes so low that the magnetic diffusion timescale becomes longer than the typical ages of radio--pulsars, thus resulting in apparently no dissipation of the field in old NS. We also confirm the strong correlation between the magnetic field and the surface temperature of relatively young NSs discussed in preliminary works. The effective temperature of models with strong internal toroidal components are systematically higher than those of models with purely poloidal fields, due to the additional energy reservoir stored in the toroidal field that is gradually released as the field dissipates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا