Do you want to publish a course? Click here

Close encounters in a pediatric ward: measuring face-to-face proximity and mixing patterns with wearable sensors

183   0   0.0 ( 0 )
 Added by Alain Barrat
 Publication date 2011
and research's language is English




Ask ChatGPT about the research

Nosocomial infections place a substantial burden on health care systems and represent a major issue in current public health, requiring notable efforts for its prevention. Understanding the dynamics of infection transmission in a hospital setting is essential for tailoring interventions and predicting the spread among individuals. Mathematical models need to be informed with accurate data on contacts among individuals. We used wearable active Radio-Frequency Identification Devices to detect face-to-face contacts among individuals with a spatial resolution of about 1.5 meters, and a time resolution of 20 seconds. The study was conducted in a general pediatrics hospital ward, during a one-week period, and included 119 participants. Nearly 16,000 contacts were recorded during the study, with a median of approximately 20 contacts per participants per day. Overall, 25% of the contacts involved a ward assistant, 23% a nurse, 22% a patient, 22% a caregiver, and 8% a physician. The majority of contacts were of brief duration, but long and frequent contacts especially between patients and caregivers were also found. In the setting under study, caregivers do not represent a significant potential for infection spread to a large number of individuals, as their interactions mainly involve the corresponding patient. Nurses would deserve priority in prevention strategies due to their central role in the potential propagation paths of infections. Our study shows the feasibility of accurate and reproducible measures of the pattern of contacts in a hospital setting. The results are particularly useful for the study of the spread of respiratory infections, for monitoring critical patterns, and for setting up tailored prevention strategies. Proximity-sensing technology should be considered as a valuable tool for measuring such patterns and evaluating nosocomial prevention strategies in specific settings.



rate research

Read More

Measuring close proximity interactions between individuals can provide key information on social contacts in human communities. With the present study, we report the quantitative assessment of contact patterns in a village in rural Malawi, based on proximity sensors technology that allows for high-resolution measurements of social contacts. The system provided information on community structure of the village, on social relationships and social assortment between individuals, and on daily contacts activity within the village. Our findings revealed that the social network presented communities that were highly correlated with household membership, thus confirming the importance of family ties within the village. Contacts within households occur mainly between adults and children, and adults and adolescents. This result suggests that the principal role of adults within the family is the care for the youngest. Most of the inter-household interactions occurred among caregivers and among adolescents. We studied the tendency of participants to interact with individuals with whom they shared similar attributes (i.e., assortativity). Age and gender assortativity were observed in inter-household network, showing that individuals not belonging to the same family group prefer to interact with people with whom they share similar age and gender. Age disassortativity is observed in intra-household networks. Family members congregate in the early morning, during lunch time and dinner time. In contrast, individuals not belonging to the same household displayed a growing contact activity from the morning, reaching a maximum in the afternoon. The data collection infrastructure used in this study seems to be very effective to capture the dynamics of contacts by collecting high resolution temporal data and to give access to the level of information needed to understand the social context of the village.
We aimed to explore the utility of the recently developed open-source mobile health platform RADAR-base as a toolbox to rapidly test the effect and response to NPIs aimed at limiting the spread of COVID-19. We analysed data extracted from smartphone and wearable devices and managed by the RADAR-base from 1062 participants recruited in Italy, Spain, Denmark, the UK, and the Netherlands. We derived nine features on a daily basis including time spent at home, maximum distance travelled from home, maximum number of Bluetooth-enabled nearby devices (as a proxy for physical distancing), step count, average heart rate, sleep duration, bedtime, phone unlock duration, and social app use duration. We performed Kruskal-Wallis tests followed by post-hoc Dunns tests to assess differences in these features among baseline, pre-, and during-lockdown periods. We also studied behavioural differences by age, gender, body mass index (BMI), and educational background. We were able to quantify expected changes in time spent at home, distance travelled, and the number of nearby Bluetooth-enabled devices between pre- and during-lockdown periods. We saw reduced sociality as measured through mobility features, and increased virtual sociality through phone usage. People were more active on their phones, spending more time using social media apps, particularly around major news events. Furthermore, participants had lower heart rate, went to bed later, and slept more. We also found that young people had longer homestay than older people during lockdown and fewer daily steps. Although there was no significant difference between the high and low BMI groups in time spent at home, the low BMI group walked more. RADAR-base can be used to rapidly quantify and provide a holistic view of behavioural changes in response to public health interventions as a result of infectious outbreaks such as COVID-19.
226 - J. Stehle , N. Voirin , A. Barrat 2011
Little quantitative information is available on the mixing patterns of children in school environments. Describing and understanding contacts between children at school would help quantify the transmission opportunities of respiratory infections and identify situations within schools where the risk of transmission is higher. We report on measurements carried out in a French school (6-12 years children), where we collected data on the time-resolved face-to-face proximity of children and teachers using a proximity-sensing infrastructure based on radio frequency identification devices. Data on face-to-face interactions were collected on October 1st and 2nd, 2009. We recorded 77,602 contact events between 242 individuals. Each child has on average 323 contacts per day with 47 other children, leading to an average daily interaction time of 176 minutes. Most contacts are brief, but long contacts are also observed. Contacts occur mostly within each class, and each child spends on average three times more time in contact with classmates than with children of other classes. We describe the temporal evolution of the contact network and the trajectories followed by the children in the school, which constrain the contact patterns. We determine an exposure matrix aimed at informing mathematical models. This matrix exhibits a class and age structure which is very different from the homogeneous mixing hypothesis. The observed properties of the contact patterns between school children are relevant for modeling the propagation of diseases and for evaluating control measures. We discuss public health implications related to the management of schools in case of epidemics and pandemics. Our results can help define a prioritization of control measures based on preventive measures, case isolation, classes and school closures, that could reduce the disruption to education during epidemics.
292 - Runze Yan , Afsaneh Doryab 2021
Modeling biological rhythms helps understand the complex principles behind the physical and psychological abnormalities of human bodies, to plan life schedules, and avoid persisting fatigue and mood and sleep alterations due to the desynchronization of those rhythms. The first step in modeling biological rhythms is to identify their characteristics, such as cyclic periods, phase, and amplitude. However, human rhythms are susceptible to external events, which cause irregular fluctuations in waveforms and affect the characterization of each rhythm. In this paper, we present our exploratory work towards developing a computational framework for automated discovery and modeling of human rhythms. We first identify cyclic periods in time series data using three different methods and test their performance on both synthetic data and real fine-grained biological data. We observe consistent periods are detected by all three methods. We then model inner cycles within each period through identifying change points to observe fluctuations in biological data that may inform the impact of external events on human rhythms. The results provide initial insights into the design of a computational framework for discovering and modeling human rhythms.
Over the past several decades, naturally occurring and man-made mass casualty incidents (MCI) have increased in frequency and number, worldwide. To test the impact of such event on medical resources, simulations can provide a safe, controlled setting while replicating the chaotic environment typical of an actual disaster. A standardised method to collect and analyse data from mass casualty exercises is needed, in order to assess preparedness and performance of the healthcare staff involved. We report on the use of wearable proximity sensors to measure proximity events during a MCI simulation. We investigated the interactions between medical staff and patients, to evaluate the time dedicated by the medical staff with respect to the severity of the injury of the victims depending on the roles. We estimated the presence of the patients in the different spaces of the field hospital, in order to study the patients flow. Data were obtained and collected through the deployment of wearable proximity sensors during a mass casualty incident functional exercise. The scenario included two areas: the accident site and the Advanced Medical Post (AMP), and the exercise lasted 3 hours. A total of 238 participants simulating medical staff and victims were involved. Each participant wore a proximity sensor and 30 fixed devices were placed in the field hospital. The contact networks show a heterogeneous distribution of the cumulative time spent in proximity by participants. We obtained contact matrices based on cumulative time spent in proximity between victims and the rescuers. Our results showed that the time spent in proximity by the healthcare teams with the victims is related to the severity of the patients injury. The analysis of patients flow showed that the presence of patients in the rooms of the hospital is consistent with triage code and diagnosis, and no obvious bottlenecks were found.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا