No Arabic abstract
We perform a time-dependent ionization analysis to constrain plasma heating requirements during a fast partial halo coronal mass ejection (CME) observed on 2000 June 28 by the Ultraviolet Coronagraph Spectrometer (UVCS) aboard the Solar and Heliospheric Observatory (SOHO). We use two methods to derive densities from the UVCS measurements, including a density sensitive O V line ratio at 1213.85 and 1218.35 Angstroms, and radiative pumping of the O VI 1032,1038 doublet by chromospheric emission lines. The most strongly constrained feature shows cumulative plasma heating comparable to or greater than the kinetic energy, while features observed earlier during the event show cumulative plasma heating of order or less than the kinetic energy. SOHO Michelson Doppler Imager (MDI) observations are used to estimate the active region magnetic energy. We consider candidate plasma heating mechanisms and provide constraints when possible. Because this CME was associated with a relatively weak flare, the contribution by flare energy (e.g., through thermal conduction or energetic particles) is probably small; however, the flare may have been partially behind the limb. Wave heating by photospheric motions requires heating rates significantly larger than those previously inferred for coronal holes, but the eruption itself could drive waves which heat the plasma. Heating by small-scale reconnection in the flux rope or by the CME current sheet is not significantly constrained. UVCS line widths suggest that turbulence must be replenished continually and dissipated on time scales shorter than the propagation time in order to be an intermediate step in CME heating.
We simulate a coronal mass ejection (CME) using a three-dimensional magnetohydrodynamic (MHD) code that includes coronal heating, thermal conduction, and radiative cooling in the energy equation. The magnetic flux distribution at 1 R$_s$ is produced by a localized subsurface dipole superimposed on a global dipole field, mimicking the presence of an active region within the global corona. Transverse electric fields are applied near the polarity inversion line to introduce a transverse magnetic field, followed by the imposition of a converging flow to form and destabilize a flux rope, producing an eruption. We examine the quantities responsible for plasma heating and cooling during the eruption, including thermal conduction, radiation, adiabatic effects, coronal heating, and ohmic heating. We find that ohmic heating is an important contributor to hot temperatures in the current sheet region early in the eruption, but in the late phase adiabatic compression plays an important role in heating the plasma there. Thermal conduction also plays an important role in the transport of thermal energy away from the current sheet region throughout the reconnection process, producing a ``thermal halo and widening the region of high temperatures. We simulate emission from solar telescopes for this eruption and find that there is evidence for emission from heated plasma above the flare loops late in the eruption, when the adiabatic heating is the dominant heating term. These results provide an explanation for hot supra-arcade plasma sheets that are often observed in X-rays and extreme ultraviolet wavelengths during the decay phase of large flares.
Coronal mass ejections (CMEs), often associated with flares, are the most powerful magnetic phenomena occurring on the Sun. Stars show magnetic activity levels up to 10^4 times higher, and CME effects on stellar physics and circumstellar environments are predicted to be significant. However, stellar CMEs remain observationally unexplored. Using time-resolved high-resolution X-ray spectroscopy of a stellar flare on the active star HR 9024 observed with Chandra/HETGS, we distinctly detected Doppler shifts in S XVI, Si XIV, and Mg XII lines that indicate upward and downward motions of hot plasmas (~10-25 MK) within the flaring loop, with velocity v~100-400 km/s, in agreement with a model of flaring magnetic tube. Most notably, we also detected a later blueshift in the O VIII line which reveals an upward motion, with v=90+/-30 km/s, of cool plasma (~4 MK), that we ascribe to a CME coupled to the flare. From this evidence we were able to derive a CME mass of 1x10^21 g and a CME kinetic energy of 5x10^34 erg. These values provide clues in the extrapolation of the solar case to higher activity levels, suggesting that CMEs could indeed be a major cause of mass and angular momentum loss.
The Sun is an active star that can launch large eruptions of magnetised plasma into the heliosphere, called coronal mass ejections (CMEs). These ejections can drive shocks that accelerate particles to high energies, often resulting in radio emission at low frequencies (<200 MHz). To date, the relationship between the expansion of CMEs, shocks and particle acceleration is not well understood, partly due to the lack of radio imaging at low frequencies during the onset of shock-producing CMEs. Here, we report multi-instrument radio, white-light and ultraviolet imaging of the second largest flare in Solar Cycle 24 (2008-present) and its associated fast CME (3038+/-288 km/s). We identify the location of a multitude of radio shock signatures, called herringbones, and find evidence for shock accelerated electron beams at multiple locations along the expanding CME. These observations support theories of non-uniform, rippled shock fronts driven by an expanding CME in the solar corona.
We report here on the determination of plasma physical parameters across a shock driven by a Coronal Mass Ejection using White Light (WL) coronagraphic images and Radio Dynamic Spectra (RDS). The event analyzed here is the spectacular eruption that occurred on June 7th 2011, a fast CME followed by the ejection of columns of chromospheric plasma, part of them falling back to the solar surface, associated with a M2.5 flare and a type-II radio burst. Images acquired by the SOHO/LASCO coronagraphs (C2 and C3) were employed to track the CME-driven shock in the corona between 2-12 R$_odot$ in an angular interval of about 110$^circ$. In these intervals we derived 2-Dimensional (2D) maps of electron density, shock velocity and shock compression ratio, and we measured the shock inclination angle with respect to the radial direction. Under plausible assumptions, these quantities were used to infer 2D maps of shock Mach number $M_text{A}$ and strength of coronal magnetic fields at the shocks heights. We found that in the early phases (2-4 R$_odot$) the whole shock surface is super-Alfvenic, while later on (i.e. higher up) it becomes super-Alfvenic only at the nose. This is in agreement with the location for the source of the observed type-II burst, as inferred from RDS combined with the shock kinematic and coronal densities derived from WL. For the first time, a coronal shock is used to derive a 2D map of the coronal magnetic field strength over a 10 R$_odot$ altitude and $sim 110^circ$ latitude intervals.
Context. Some of the most prominent sources for particle acceleration in our Solar System are large eruptions of magnetised plasma from the Sun called coronal mass ejections (CMEs). These accelerated particles can generate radio emission through various mechanisms. Aims. CMEs are often accompanied by a variety of solar radio bursts with different shapes and characteristics in dynamic spectra. Radio bursts directly associated with CMEs often show movement in the direction of CME expansion. Here, we aim to determine the emission mechanism of multiple moving radio bursts that accompanied a flare and CME that took place on 14 June 2012. Methods. We used radio imaging from the Nancay Radioheliograph, combined with observations from the Solar Dynamics Observatory and Solar Terrestrial Relations Observatory spacecraft, to analyse these moving radio bursts in order to determine their emission mechanism and three-dimensional (3D) location with respect to the expanding CME. Results. In using a 3D representation of the particle acceleration locations in relation to the overlying coronal magnetic field and the CME propagation, for the first time, we provide evidence that these moving radio bursts originate near the CME flanks and some that are possible signatures of shock-accelerated electrons following the fast CME expansion in the low corona. Conclusions. The moving radio bursts, as well as other stationary bursts observed during the eruption, occur simultaneously with a type IV continuum in dynamic spectra, which is not usually associated with emission at the CME flanks. Our results show that moving radio bursts that could traditionally be classified as moving type IVs can represent shock signatures associated with CME flanks or plasma emission inside the CME behind its flanks, which are closely related to the lateral expansion of the CME in the low corona.