The consequences of on-shell supersymmetry are studied for scattering amplitudes with massive particles in four dimensions. Using the massive version of the spinor helicity formalism the supersymmetry transformations relating products of on-shell states are derived directly from the on-shell supersymmetry algebra for any massive representation. Solutions to the resulting Ward identities can be constructed as functions on the on-shell superspaces that are obtained from the coherent state method. In simple cases it is shown that these superspaces allow one to construct explicitly supersymmetric scattering amplitudes. Supersymmetric on-shell recursion relations for tree-level superamplitudes with massive particles are introduced. As examples, simple supersymmetric amplitudes are constructed in SQCD, the Abelian Higgs model, the Coulomb branch of N=4 super Yang-Mills, QCD with an effective Higgs-gluon coupling and for massive vector boson currents.