No Arabic abstract
The consequences of on-shell supersymmetry are studied for scattering amplitudes with massive particles in four dimensions. Using the massive version of the spinor helicity formalism the supersymmetry transformations relating products of on-shell states are derived directly from the on-shell supersymmetry algebra for any massive representation. Solutions to the resulting Ward identities can be constructed as functions on the on-shell superspaces that are obtained from the coherent state method. In simple cases it is shown that these superspaces allow one to construct explicitly supersymmetric scattering amplitudes. Supersymmetric on-shell recursion relations for tree-level superamplitudes with massive particles are introduced. As examples, simple supersymmetric amplitudes are constructed in SQCD, the Abelian Higgs model, the Coulomb branch of N=4 super Yang-Mills, QCD with an effective Higgs-gluon coupling and for massive vector boson currents.
We discuss the conditions for extra supersymmetry of the N=(2,2) supersymmetric vector multiplets described in arXiv:0705.3201 [hep-th] and in arXiv:0808.1535 [hep-th]. We find (4,4) supersymmetry for the semichiral vector multiplet but not for the Large Vector Multiplet.
Massive tensor multiplets have recently been scrutinized in hep-th/0410051 and hep-th/0410149, as they appear in orientifold compactifications of type IIB string theory. Here we formulate several dually equivalent models for massive N = 1, N=2 tensor multiplets in four space-time dimensions. In the N = 2 case, we employ harmonic and projective superspace techniques.
We formulate off-shell N=1 superconformal higher spin multiplets in four spacetime dimensions and briefly discuss their coupling to conformal supergravity. As an example, we explicitly work out the coupling of the superconformal gravitino multiplet to conformal supergravity. The corresponding action is super-Weyl invariant for arbitrary supergravity backgrounds. However, it is gauge invariant only if the supersymmetric Bach tensor vanishes. This is similar to linearised conformal supergravity in curved background.
We propose a new lattice superfield formalism in momentum representation which accommodates species doublers of the lattice fermions and their bosonic counterparts as super multiplets. We explicitly show that one dimensional N=2 model with interactions has exact Lie algebraic supersymmetry on the lattice for all super charges. In coordinate representation the finite difference operator is made to satisfy Leibnitz rule by introducing a non local product, the ``star product, and the exact lattice supersymmetry is realized. The standard momentum conservation is replaced on the lattice by the conservation of the sine of the momentum, which plays a crucial role in the formulation. Half lattice spacing structure is essential for the one dimensional model and the lattice supersymmetry transformation can be identified as a half lattice spacing translation combined with alternating sign structure. Invariance under finite translations and locality in the continuum limit are explicitly investigated and shown to be recovered. Supersymmetric Ward identities are shown to be satisfied at one loop level. Lie algebraic lattice supersymmetry algebra of this model suggests a close connection with Hopf algebraic exactness of the link approach formulation of lattice supersymmetry.
We present a novel type of differential equations for on-shell loop integrals. The equations are second-order and importantly, they reduce the loop level by one, so that they can be solved iteratively in the loop order. We present several infinite series of integrals satisfying such iterative differential equations. The differential operators we use are best written using momentum twistor space. The use of the latter was advocated in recent papers discussing loop integrals in N=4 super Yang-Mills. One of our motivations is to provide a tool for deriving analytical results for scattering amplitudes in this theory. We show that the integrals needed for planar MHV amplitudes up to two loops can be thought of as deriving from a single master topology. The master integral satisfies our differential equations, and so do most of the reduced integrals. A consequence of the differential equations is that the integrals we discuss are not arbitrarily complicated transcendental functions. For two specific two-loop integrals we give the full analytic solution. The simplicity of the integrals appearing in the scattering amplitudes in planar N=4 super Yang-Mills is strongly suggestive of a relation to the conjectured underlying integrability of the theory. We expect these differential equations to be relevant for all planar MHV and non-MHV amplitudes. We also discuss possible extensions of our method to more general classes of integrals.