Do you want to publish a course? Click here

Mechanics and force transmission in soft composites of rods in elastic gels

141   0   0.0 ( 0 )
 Added by Moumita Das
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report detailed theoretical investigations of the micro-mechanics and bulk elastic properties of composites consisting of randomly distributed stiff fibers embedded in an elastic matrix in two and three dimensions. Recent experiments published in Physical Review Letters [102, 188303 (2009)] have suggested that the inclusion of stiff microtubules in a softer, nearly incompressible biopolymer matrix can lead to emergent compressibility. This can be understood in terms of the enhancement of the compressibility of the composite relative to its shear compliance as a result of the addition of stiff rod-like inclusions. We show that the Poissons ratio $ u$ of such a composite evolves with increasing rod density towards a particular value, or {em fixed point}, independent of the material properties of the matrix, so long as it has a finite initial compressibility. This fixed point is $ u=1/4$ in three dimensions and $ u=1/3$ in two dimensions. Our results suggest an important role for stiff filaments such as microtubules and stress fibers in cell mechanics. At the same time, our work has a wider elasticity context, with potential applications to composite elastic media with a wide separation of scales in stiffness of its constituents such as carbon nanotube-polymer composites, which have been shown to have highly tunable mechanics.



rate research

Read More

Soft materials with a liquid component are an emerging paradigm in materials design. The incorporation of a liquid phase, such as water, liquid metals, or complex fluids, into solid materials imparts unique properties and characteristics that emerge as a result of the dramatically different properties of the liquid and solid. Especially in recent years, this has led to the development and study of a range of novel materials with new functional responses, with applications in topics including soft electronics, soft robotics, 3D printing, wet granular systems and even in cell biology. Here we provide a review of solid-liquid composites, broadly defined as a material system with at least one, phase-separated liquid component, and discuss their morphology and fabrication approaches, their emergent mechanical properties and functional response, and the broad range of their applications.
Soft elastic composite materials can serve as actuators when they transform changes in external fields into mechanical deformation. Here, we address the corresponding deformational behavior of magnetic gels and elastomers, consisting of magnetizable colloidal particles in a soft polymeric matrix and exposed to external magnetic fields. Since many practical realizations of such materials involve particulate inclusions of polydisperse size distributions, we concentrate on the effect that mixed particle sizes have on the overall deformational response. To perform a systematic study, our focus is on binary size distributions. We systematically vary the fraction of larger particles relative to smaller ones and characterize the resulting magnetostrictive behavior. The consequences for systems of various different spatial particle arrangements and different degrees of compressibility of the elastic matrix are evaluated. In parts, we observe a qualitative change in the overall response for selected systems of mixed particle sizes. Specifically, overall changes in volume and relative elongations or contractions in response to an induced magnetization can be reversed into the opposite types of behavior. Our results should apply to the characteristics of other soft elastic composite materials like electrorheological gels and elastomers when exposed to external electric fields as well. Overall, we hope to stimulate the further investigation on the purposeful use of mixed particle sizes as a means to design tailored requested material behavior.
Following recent X-ray diffraction experiments by Wong, Li, and Safinya on biopolymer gels, we apply Onsager excluded volume theory to a nematic mixture of rigid rods and strong ``$pi/2$ cross-linkers obtaining a long-ranged, highly anisotropic depletion attraction between the linkers. This attraction leads to breakdown of the percolation theory for this class of gels, to breakdown of Onsagers second-order virial method, and to formation of heterogeneities in the form of raft-like ribbons.
We sandwich a colloidal gel between two parallel plates and induce a radial flow by lifting the upper plate at a constant velocity. Two distinct scenarios result from such a tensile test: ($i$) stable flows during which the gel undergoes a tensile deformation without yielding, and ($ii$) unstable flows characterized by the radial growth of air fingers into the gel. We show that the unstable regime occurs beyond a critical energy input, independent of the gels macroscopic yield stress. This implies a local fluidization of the gel at the tip of the growing fingers and results in the most unstable wavelength of the patterns exhibiting the characteristic scalings of the classical viscous fingering instability. Our work provides a quantitative criterion for the onset of fingering in colloidal gels based on a local shear-induced yielding, in agreement with the delayed failure framework.
Soft materials may break irreversibly upon applying sufficiently large shear oscillations, a process which physical mechanism remains largely elusive. In this work, the rupture of protein gels made of sodium caseinate under an oscillatory stress is shown to occur in an abrupt, brittle-like manner. Upon increasing the stress amplitude, the build-up of harmonic modes in the strain response can be rescaled for all gel concentrations. This rescaling yields an empirical criterion to predict the rupture point way before the samples are significantly damaged. Fatigue experiments under stress oscillations of constant amplitude can be mapped onto the former results, which indicates that rupture is independent of the temporal pathway in which strain and damage accumulate. Finally, using ultrasonic imaging, we measure the local mechanical properties of the gels before, during and after breakdown, showing that the strain field remains perfectly homogeneous up to rupture but suddenly gives way to a solid-fluid phase separation upon breakdown.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا