No Arabic abstract
Recently, Dammak and coworkers (H. Dammak, Y. Chalopin, M. Laroche, M. Hayoun, and J.J. Greffet. Quantumthermal bath for molecular dynamics simulation. Phys. Rev. Lett., 103:190601, 2009.) proposed that the quantum statistics of vibrations in condensed systems at low temperature could be simulated by running molecular dynamics simulations in the presence of a colored noise with an appropriate power spectral density. In the present contribution, we show how this method can be implemented in a flexible manner and at a low computational cost by synthesizing the corresponding noise on the fly. The proposed algorithm is tested for a simple harmonic chain as well as for a more realistic model of aluminium crystal. The energy and Debye-Waller factor are shown to be in good agreement with those obtained from harmonic approximations based on the phonon spectrum of the systems. The limitations of the method associated with anharmonic effects are also briefly discussed. Some perspectives for disordered materials and heat transfer are considered.
We present a method for performing atomistic spin dynamic simulations. A comprehensive summary of all pertinent details for performing the simulations such as equations of motions, models for including temperature, methods of extracting data and numerical schemes for performing the simulations is given. The method can be applied in a first principles mode, where all interatomic exchange is calculated self-consistently, or it can be applied with frozen parameters estimated from experiments or calculated for a fixed spin-configuration. Areas of potential applications to different magnetic questions are also discussed. The method is finally applied to one situation where the macrospin model breaks down; magnetic switching in ultra strong fields.
We have extended our recent molecular-dynamic simulations of memristors to include the effect of thermal inhomogeneities on mobile ionic species appearing during operation of the device. Simulations show a competition between an attractive short-ranged interaction between oxygen vacancies and an enhanced local temperature in creating/destroying the conducting oxygen channels. Such a competition would strongly affect the performance of the memristive devices.
High energy physics has a constant demand for random number generators (RNGs) with high statistical quality. In this paper, we present ROOTs implementation of the RANLUX++ generator. We discuss the choice of relying only on standard C++ for portability reasons. Building on an initial implementation, we describe a set of optimizations to increase generator speed. This allows to reach performance very close to the original assembler version. We test our implementation on an Apple M1 and Nvidia GPUs to demonstrate the advantages of portable code.
Molecular dynamics simulations on tensile deformation of initially defect free single crystal copper nanowire oriented in <001>{100} has been carried out at 10 K under adiabatic and isothermal loading conditions. The tensile behaviour was characterized by sharp rise in stress in elastic regime followed by sudden drop at the point of dislocation nucleation. The important finding is that the variation in dislocation density is correlated with the observed stress-strain response. Several interesting micro- structural features were observed during tensile deformation such as slip, phase transformation and pentagonal structure in necking region affecting the plastic deformation behaviour of single crystal copper nanowire.
The heat flux autocorrelation functions of carbon nanotubes (CNTs) with different radius and lengths is calculated using equilibrium molecular dynamics. The thermal conductance of CNTs is also calculated using the Green-Kubo relation from the linear response theory. By pointing out the ambiguity in the cross section definition of single wall CNTs, we use the thermal conductance instead of conductivity in calculations and discussions. We find that the thermal conductance of CNTs diverges with the CNT length. After the analysis of vibrational density of states, it can be concluded that more low frequency vibration modes exist in longer CNTs, and they effectively contribute to the divergence of thermal conductance.