Energy-Dependent Timing of Thermal Emission in Solar Flares


Abstract in English

We report solar flare plasma to be multi-thermal in nature based on the theoretical model and study of the energy-dependent timing of thermal emission in ten M-class flares. We employ high-resolution X-ray spectra observed by the Si detector of the Solar X-ray Spectrometer (SOXS). The SOXS onboard the Indian GSAT-2 spacecraft was launched by the GSLV-D2 rocket on 8 May 2003. Firstly we model the spectral evolution of the X-ray line and continuum emission flux F(epsilon) from the flare by integrating a series of isothermal plasma flux. We find that multi-temperature integrated flux F(epsilon) is a power-law function of epsilon with a spectral index (gamma) approx -4.65. Next, based on spectral-temporal evolution of the flares we find that the emission in the energy range E= 4 - 15 keV is dominated by temperatures of T= 12 - 50 MK, while the multi-thermal power-law DEM index (gamma) varies in the range of -4.4 and -5.7. The temporal evolution of the X-ray flux F(epsilon,t) assuming a multi-temperature plasma governed by thermal conduction cooling reveals that the temperature-dependent cooling time varies between 296 and 4640 s and the electron density (n_e) varies in the range of n_e= (1.77-29.3)*10^10 cm-3. Employing temporal evolution technique in the current study as an alternative method for separating thermal from non-thermal components in the energy spectra, we measure the break-energy point ranging between 14 and 21pm1.0 keV.

Download