No Arabic abstract
We have performed x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) studies of the diluted ferromagnetic semiconductor Zn$_{1-textit{x}}$Cr$_textit{x}$Te doped with iodine (I) or nitrogen (N), corresponding to electron or hole doping, respectively. From the shape of the Cr $2p$ absorption peak in the XAS spectra, it was concluded that Cr ions in the undoped, I-doped and lightly N-doped samples are divalent (Cr$^{2+}$), while Cr$^{2+}$ and trivalent (Cr$^{3+}$) coexist in the heavily N-doped sample. This result indicates that the doped nitrogen atoms act as acceptors but that doped holes are located on the Cr ions. In the magnetic-field dependence of the XMCD signal at the Cr $2p$ absorption edge, ferromagnetic behaviors were observed in the undoped, I-doped, and lightly N-doped samples, while ferromagnetism was considerably suppressed in heavily N-doped sample, which is consistent with the results of magnetization measurements.
BiFeO$_3$ (BFO) shows both ferroelectricity and magnetic ordering at room temperature but its ferromagnetic component, which is due to spin canting, is negligible. Substitution of transition-metal atoms such as Co for Fe is known to enhance the ferromagnetic component in BFO. In order to reveal the origin of such magnetization enhancement, we performed soft x-ray absorption spectroscopy (XAS) and soft x-ray magnetic circular dichroism (XMCD) studies of BiFe$_{1-x}$Co$_x$O$_3$ ({it x} = 0 to 0.30) (BFCO) thin films grown on LaAlO$_3$(001) substrates. The XAS results indicated that the Fe and Co ions are in the Fe$^{3+}$ and Co$^{3+}$ states. The XMCD results showed that the Fe ions show ferromagnetism while the Co ions are antiferromagnetic at room temperature. The XAS and XMCD measurements also revealed that part of the Fe$^{3+}$ ions are tetrahedrally co-ordinated by oxygen ions but that the XMCD signals of the octahedrally coordinated Fe$^{3+}$ ions increase with Co content. The results suggest that an impurity phase such as the ferrimagnetic $gamma$-Fe$_2$O$_3$ which exists at low Co concentration decreases with increasing Co concentration and that the ferromagnetic component of the Fe$^{3+}$ ion in the octrahedral crystal fields increases with Co concentration, probably reflecting the increased canting of the Fe$^{3+}$ ions.
We have investigated the electronic structure of ZnO:Mn and ZnO:Mn,N thin films using x-ray magnetic circular dichroism (XMCD) and resonance-photoemission spectroscopy. From the Mn 2$p$$rightarrow3d$ XMCD results, it is shown that, while XMCD signals only due to paramagnetic Mn$^{2+}$ ions were observed in ZnO:Mn, nonmagnetic, paramagnetic and ferromagnetic Mn$^{2+}$ ions coexist in ZnO:Mn,N. XMCD signals of ZnO:Mn,N revealed that the localized Mn$^{2+}$ ground state and Mn$^{2+}$ state hybridized with ligand hole coexisted, implying $p$-$d$ exchange coupling. In the valence-band spectra, spectral weight near the Fermi level was suppressed, suggesting that interaction between magnetic moments in ZnO:Mn,N has localized nature.
We report on the results of x-ray absorption (XAS), x-ray magnetic circular dichroism (XMCD), and photoemission experiments on {it n}-type Zn$_{1-x}$Co$_x$O ($x=0.05$) thin film, which shows ferromagnetism at room temperature. The XMCD spectra show a multiplet structure, characteristic of the Co$^{2+}$ ion tetrahedrally coordinated by oxygen, suggesting that the ferromagnetism comes from Co ions substituting the Zn site in ZnO. The magnetic field and temperature dependences of the XMCD spectra imply that the non-ferromagnetic Co ions are strongly coupled antiferromagnetically with each other.
We have performed x-ray magnetic circular dichroism (XMCD) and valence-band photoemission studies of the diluted ferromagnetic semiconductor Zn$_{1-x}$Cr$_x$Te. XMCD signals due to ferromagnetism were observed at the Cr 2p absorption edge. Comparison with atomic multiplet calculations suggests that the magnetically active component of the Cr ion was divalent under the tetrahedral crystal field with tetragonal distortion along the crystalline a-, b-, and c-axes. In the valence-band spectra, spectral weight near the Fermi level was strongly suppressed, suggesting the importance of Jahn-Teller effect and the strong Coulomb interaction between the Cr 3d electrons.
We demonstrate sensitivity of the Mn 3d valence states to strain in the ferromagnetic semiconductors (Ga,Mn)As and (Al,Ga,Mn)As, using x-ray magnetic circular dichroism (XMCD). The spectral shape of the Mn $L_{2,3}$ XMCD is dependent on the orientation of the magnetization, and features with cubic and uniaxial dependence are distinguished. Reversing the strain reverses the sign of the uniaxial anisotropy of the Mn $L_3$ pre-peak which is ascribed to transitions from the Mn 2p core level to p-d hybridized valence band hole states. With increasing carrier localization, the $L_3$ pre-peak intensity increases, indicating an increasing 3d character of the hybridized holes.