We present a reliable nonperturbative calculation of the QCD correction, at leading order in the electromagnetic coupling, to the anomalous magnetic moment of the electron, muon, and tau leptons using two-flavor lattice QCD. We use multiple lattice spacings, multiple volumes, and a broad range of quark masses to control the continuum, infinite-volume, and chiral limits. We examine the impact of the commonly ignored disconnected diagrams and introduce a modification to the previously used method that results in a well-controlled lattice calculation. We obtain 1.513(43) 10^(-12), 5.72(16) 10^(-8), and 2.650(54) 10^(-6) for the leading-order two-flavor QCD correction to the anomalous magnetic moment of the electron, muon, and tau, respectively, each accurate to better than 3%.