Do you want to publish a course? Click here

XMM-Newton observations of the X-ray soft polar QS Telescopii

258   0   0.0 ( 0 )
 Added by Iris Traulsen
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context. On the basis of XMM-Newton observations, we investigate the energy balance of selected magnetic cataclysmic variables, which have shown an extreme soft-to-hard X-ray flux ratio in the ROSAT All-Sky Survey. Aims. We intend to establish the X-ray properties of the system components, their flux contributions, and the accretion geometry of the X-ray soft polar QS Tel. In the context of high-resolution X-ray analyses of magnetic cataclysmic variables, this study will contribute to better understanding the accretion processes on magnetic white dwarfs. Methods. During an intermediate high state of accretion of QS Tel, we have obtained 20 ks of XMM-Newton data, corresponding to more than two orbital periods, accompanied by simultaneous optical photometry and phase-resolved spectroscopy. We analyze the multi-wavelength spectra and light curves and compare them to former high- and low-state observations. Results. Soft emission at energies below 2 keV dominates the X-ray light curves. The complex double-peaked maxima are disrupted by a sharp dip in the very soft energy range (0.1-0.5 keV), where the count rate abruptly drops to zero. The EPIC spectra are described by a minimally absorbed black body at 20 eV and two partially absorbed MEKAL plasma models with temperatures around 0.2 and 3 keV. The black-body-like component arises from one mainly active, soft X-ray bright accretion region nearly facing the mass donor. Parts of the plasma emission might be attributed to the second, virtually inactive pole. High soft-to-hard X-ray flux ratios and hardness ratios demonstrate that the high-energy emission of QS Tel is substantially dominated by its X-ray soft component.



rate research

Read More

80 - K.L. Page 2004
XMM-Newton observations of seven QSOs are presented and the EPIC spectra analysed. Five of the AGN show evidence for Fe K-alpha emission, with three being slightly better fitted by lines of finite width; at the 99 per cent level they are consistent with being intrinsically narrow, though. The broad-band spectra can be well modelled by a combination of different temperature blackbodies with a power-law, with temperatures between kT ~ 100-300 eV. On the whole, these temperatures are too high to be direct thermal emission from the accretion disc, so a Comptonization model was used as a more physical parametrization. The Comptonizing electron population forms the soft excess emission, with an electron temperature of ~ 120-680 eV. Power-law, thermal plasma and disc blackbody models were also fitted to the soft X-ray excess. Of the sample, four of the AGN are radio-quiet and three radio-loud. The radio-quiet QSOs may have slightly stronger soft excesses, although the electron temperatures cover the same range for both groups.
Context. The energy balance of cataclysmic variables with strong magnetic fields is a central subject in understanding accretion processes on magnetic white dwarfs. With XMM-Newton, we perform a spectroscopic and photometric study of soft X-ray selected polars during their high states of accretion. Aims. On the basis of X-ray and optical observations of the magnetic cataclysmic variable AI Tri, we derive the properties of the spectral components, their flux contributions, and the physical structure of the accretion region in soft polars. Methods. We use multi-temperature approaches in our xspec modeling of the spectra to describe the physical conditions and the structures of the post-shock accretion flow and the accretion spot on the white-dwarf surface. In addition, we investigate the accretion geometry of the system by a timing analysis of the photometric data. Results. Flaring soft X-ray emission from the heated surface of the white dwarf dominates the X-ray flux during roughly 70% of the binary cycle. This component deviates from a single black body and can be described by a superimposition of mildly absorbed black bodies with a Gaussian temperature distribution. In addition, weaker hard X-ray emission is visible nearly all the time. The spectrum from the cooling post-shock accretion flow is most closely fitted by a combination of thermal plasma mekal models with temperature profiles adapted from prior stationary two-fluid hydrodynamic calculations. The soft X-ray light curves show a dip during the bright phase, which can be interpreted as self-absorption in the accretion stream. Phase-resolved spectral modeling supports the picture of one-pole accretion and self-eclipse. One of the optical light curves corresponds to an irregular mode of accretion. During a short XMM-Newton observation at the same epoch, the X-ray emission of the system is clearly dominated by the soft component.
207 - M. Galeazzi , A. Gupta , K. Covey 2006
We analyzed two XMM-Newton observations in the direction of the high density, high latitude, neutral hydrogen cloud MBM20 and of a nearby low density region that we called the Eridanus hole. The cloud MBM20 is at a distance evaluated between 100 and 200 pc from the Sun and its density is sufficiently high to shield about 75% of the foreground emission in the 3/4 keV energy band.The combination of the two observations makes possible an evaluation of the OVII and OVIII emission both for the foreground component due to the Local Bubble,and the background one, due primary to the galactic halo.The two observations are in good agreement with each other and with ROSAT observations of the same part of the sky and the OVII and OVIII fluxes are OVII=3.89+/-0.56 photons cm^-2 s^-1 sr^-1, OVIII=0.68+/-0.24 photons cm^-2 s^-1 sr^-1 for MBM20 and OVII=7.26+/-0.34 photons cm^-2 s^-1 sr^-1,OVIII=1.63+/-0.17 photons cm^-2 s^-1 sr^-1 for the Eridanus hole. The spectra are in agreement with a simple three component model, one unabsorbed and one absorbed plasma component, and a power law, without evidence for any strong contamination from ion exchange in the solar system. Assuming that the two plasma components are in thermal equilibrium we obtain a temperature of 0.096 keV for the foreground component and 0.197 keV for the background one. Assuming the foreground component is due solely to Local Bubble emission we obtain a lower and upper limit for the plasma density of 0.0079 cm^-3 and 0.0095 cm^-3 and limits of 16,200 cm^-3 K and 19,500 cm^-3 K for the plasma pressure, in good agreement with theoretical predictions. Similarly, assuming that the absorbed plasma component is due to Galactic halo emission, we obtain a plasma density ranging from 0.0009 cm^-3 to 0.0016 cm^-3, and a pressure ranging from 3.0*10^3 to 6.7*10^3 cm^-3 K.
We present measurements of the Galactic halos X-ray emission for 110 XMM-Newton sight lines, selected to minimize contamination from solar wind charge exchange emission. We detect emission from few million degree gas on ~4/5 of our sight lines. The temperature is fairly uniform (median = 2.22e6 K, interquartile range = 0.63e6 K), while the emission measure and intrinsic 0.5--2.0 keV surface brightness vary by over an order of magnitude (~(0.4-7)e-3 cm^-6 pc and ~(0.5-7)e-12 erg cm^-2 s^-1 deg^-2, respectively, with median detections of 1.9e-3 cm^-6 pc and 1.5e-12 erg cm^-2 s^-1 deg^-2, respectively). The high-latitude sky contains a patchy distribution of few million degree gas. This gas exhibits a general increase in emission measure toward the inner Galaxy in the southern Galactic hemisphere. However, there is no tendency for our observed emission measures to decrease with increasing Galactic latitude, contrary to what is expected for a disk-like halo morphology. The measured temperatures, brightnesses, and spatial distributions of the gas can be used to place constraints on models for the dominant heating sources of the halo. We provide some discussion of such heating sources, but defer comparisons between the observations and detailed models to a later paper.
117 - Gavin Ramsay 2004
We present XMM-Newton observations of the eclipsing polar EP Dra which cover nearly 3 binary orbital cycles. The X-ray and UV data show evidence for a prominent dip before the eclipse which is due to the accretion stream obscuring the accretion region. The dip ingress is rapid in hard X-rays suggesting there is a highly collimated core of absorption. We find that a different level of absorption column density is required to match the observed count rates in different energy bands. We propose that this is due to the fact that different absorption components should be used to model the reprocessed X-rays, the shocked X-ray component and the UV emission and explore the affect that this has on the resulting fits to the spectrum. Further, there is evidence that absorption starts to obscure the softer X-rays shortly after the onset of the bright phase. This suggests that material is threaded by an unusually wide range of magnetic field lines, consistent with the suggestion of Bridge et al. We find that the period is slightly greater than that determined by Schwope & Mengel.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا