Do you want to publish a course? Click here

A survey of electron Bernstein wave heating and current drive potential for spherical tokamaks

374   0   0.0 ( 0 )
 Added by Jakub Urban
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The electron Bernstein wave (EBW) is typically the only wave in the electron cyclotron (EC) range that can be applied in spherical tokamaks for heating and current drive (H&CD). Spherical tokamaks (STs) operate generally in high-beta regimes, in which the usual EC O- and X- modes are cut-off. In this case, EBWs seem to be the only option that can provide features similar to the EC waves---controllable localized H&CD that can be utilized for core plasma heating as well as for accurate plasma stabilization. The EBW is a quasi-electrostatic wave that can be excited by mode conversion from a suitably launched O- or X-mode; its propagation further inside the plasma is strongly influenced by the plasma parameters. These rather awkward properties make its application somewhat more difficult. In this paper we perform an extensive numerical study of EBW H&CD performance in four typical ST plasmas (NSTX L- and H-mode, MAST Upgrade, NHTX). Coupled ray-tracing (AMR) and Fokker-Planck (LUKE) codes are employed to simulate EBWs of varying frequencies and launch conditions, which are the fundamental EBW parameters that can be chosen and controlled. Our results indicate that an efficient and universal EBW H&CD system is indeed viable. In particular, power can be deposited and current reasonably efficiently driven across the whole plasma radius. Such a system could be controlled by a suitably chosen launching antenna vertical position and would also be sufficiently robust.



rate research

Read More

13MW of electron cyclotron current drive (ECCD) power deposited inside the q = 1 surface is likely to reduce the sawtooth period in ITER baseline scenario below the level empirically predicted to trigger neo-classical tearing modes (NTMs). However, since the ECCD control scheme is solely predicated upon changing the local magnetic shear, it is prudent to plan to use a complementary scheme which directly decreases the potential energy of the kink mode in order to reduce the sawtooth period. In the event that the natural sawtooth period is longer than expected, due to enhanced alpha particle stabilisation for instance, this ancillary sawtooth control can be provided from > 10MW of ion cyclotron resonance heating (ICRH) power with a resonance just inside the q = 1 surface. Both ECCD and ICRH control schemes would benefit greatly from active feedback of the deposition with respect to the rational surface. If the q = 1 surface can be maintained closer to the magnetic axis, the efficacy of ECCD and ICRH schemes significantly increases, the negative effect on the fusion gain is reduced, and off-axis negative-ion neutral beam injection (NNBI) can also be considered for sawtooth control. Consequently, schemes to reduce the q = 1 radius are highly desirable, such as early heating to delay the current penetration and, of course, active sawtooth destabilisation to mediate small frequent sawteeth and retain a small q = 1 radius.
A new synergy mechanism between Ohkawa current drive (OKCD) of electron cyclotron (EC) waves and lower hybrid current drive (LHCD) is discovered and discussed. And the methodology to achieve this synergy effect is also introduced. Improvement of OKCD efficiency can be achieved up to a factor of ~ 2.5 in far off-axis radial region (r{ho} > 0.6) of tokamak plasmas. Making EC wave heating the electrons of co-Ip direction and LH wave heating the electrons of counter-Ip direction, the mechanism of this new synergy effect comes from the results of electron trapping and detrapping processes. The OKCD makes the low speed barely passing electrons to be trapped (trapping process), the LHCD pulls some of the high speed barely trapped electrons out of the trapped region in velocity space (detrapping process) and accelerates the detrapped electrons to a higher speed.
92 - I. E. Ochs , N. J. Fisch 2021
In the classic Landau damping initial value problem, where a planar electrostatic wave transfers energy and momentum to resonant electrons, a recoil reaction occurs in the nonresonant particles to ensure momentum conservation. To explain how net current can be driven in spite of this conservation, the literature often appeals to mechanisms that transfer this nonresonant recoil momentum to ions, which carry negligible current. However, this explanation does not allow the transport of net charge across magnetic field lines, precluding ExB rotation drive. Here, we show that in steady state, this picture of current drive is incomplete. Using a simple Fresnel model of the plasma, we show that for lower hybrid waves, the electromagnetic energy flux (Poynting vector) and momentum flux (Maxwell stress tensor) associated with the evanescent vacuum wave, become the Minkowski energy flux and momentum flux in the plasma, and are ultimately transferred to resonant particles. Thus, the torque delivered to the resonant particles is ultimately supplied by the electromagnetic torque from the antenna, allowing the nonresonant recoil response to vanish and rotation to be driven. We present a warm fluid model that explains how this momentum conservation works out locally, via a Reynolds stress that does not appear in the 1D initial value problem. This model is the simplest that can capture both the nonresonant recoil reaction in the initial-value problem, and the absence of a nonresonant recoil in the steady-state boundary value problem, thus forbidding rotation drive in the former while allowing it in the latter.
As a new spherical tokamak (ST) designed to simplify engineering requirements of a possible future fusion power source, the EXL-50 experiment features a low aspect ratio (A) vacuum vessel (VV), encircling a central post assembly containing the toroidal field coil conductors. Multiple electron cyclotron resonance heating (ECRH) resonances are located within the VV to possibly improve current drive effectiveness. The energetic electrons are observed via hard X-ray detectors, carry the bulk of the plasma current ranging from 50kA to 150kA, which is maintained for more than 1s duration. It is observed that over one Ampere current can be maintained per Watt of ECRH power issued from the 28-GHz gyrotrons. The plasma current with high line-density (approaching 1019m-2) has been achieved for plasma currents as high as 76kA. An analysis was carried out combining reconstructed multi-fluid equilibrium, guiding-center orbits, and resonant heating mechanisms. It is verified that in EXL-50 a broadly distributed current of energetic electrons creates smaller closed magnetic-flux surfaces of low aspect ratio that in turn confine the thermal plasma electrons and ions and participate in maintaining the equilibrium force-balance.
This work describes the scientific basis and associated simulation results for the magnetization of an unmagnetized plasma via beat wave current drive. Two-dimensional electromagnetic particle-in-cell simulations have been performed for a variety of angles between the injected waves to demonstrate beat wave generation in agreement with theoretical predictions of the beat-wave wave vector and saturation time, revealing new 2D effects. The simulations clearly demonstrate electron acceleration by the beat waves and resultant current drive and magnetic field generation. The basic process depends entirely on the angle between the parent waves and the ratio of the beat-wave phase velocity to the electron thermal velocity. The wave to magnetic energy conversion efficiency of the cases examined is as high as 0.2%. The technique could enable novel plasma experiments in which the use of magnetic coils is infeasible.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا