Do you want to publish a course? Click here

The specific star formation rate and stellar mass fraction of low-mass central galaxies in cosmological simulations

116   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

(Abridged) By means of high-resolution cosmological simulations in the context of the LCDM scenario, the specific star formation rate (SSFR=SFR/Ms, Ms is the stellar mass)--Ms and stellar mass fraction (Fs=Ms/Mh, Mh is the halo mass)--Ms relations of low-mass galaxies (2.5< Mh/10^10 Msun <50 at redshift z=0) at different epochs are predicted. The Hydrodynamics ART code was used and some variations of the sub-grid parameters were explored. Most of simulated galaxies, specially those with the highest resolutions, have significant disk components and their structural and dynamical properties are in reasonable agreement with observations of sub-M* field galaxies. However, the SSFRs are 5-10 times smaller than the averages of several (compiled and homogenized here) observational determinations for field blue/star-forming galaxies at z<0.3 (at low masses, most of observed field galaxies are actually blue/star-forming). This inconsistency seems to remain even at z~1.5 though less drastic. The Fs of simulated galaxies increases with Mh as semi-empirical inferences show, but in absolute values the former are ~5-10 times larger than the latter at z=0; this difference increases probably to larger factors at z~1-1.5. The inconsistencies reported here imply that simulated low-mass galaxies (0.2<Ms/10^9 Msun <30 at z=0) assembled their stellar masses much earlier than observations suggest. This confirms the predictions previously found by means of LCDM-based models of disk galaxy formation and evolution for isolated low-mass galaxies (Firmani & Avila-Reese 2010), and highlight that our implementation of astrophysics into simulations and models are still lacking vital ingredients.



rate research

Read More

We use a robust sample of 11 z~7 galaxies (z-dropouts) to estimate the stellar mass density of the universe when it was only ~750 Myr old. We combine the very deep optical to near-Infrared photometry from the HST ACS and NICMOS cameras with mid-Infrared Spitzer IRAC imaging available through the GOODS program. After carefully removing the flux from contaminating foreground sources we have obtained reliable photometry in the 3.6 and 4.5 micron IRAC channels. The spectral shapes of these sources, including their rest frame optical colors, strongly support their being at z~7 with a mean photometric redshift of <z>=7.2+/-0.5. We use Bruzual & Charlot (2003) synthetic stellar population models to constrain their stellar masses and star formation histories. We find stellar masses that range over 0.1 -12x10^9 M_sol and average ages from 20 Myr to up to 425 Myr with a mean of ~300 Myr, suggesting that in some of these galaxies most of the stars were formed at z>8 (and probably at z>~10). The best fits to the observed SEDs are consistent with little or no dust extinction, in agreement with recent results at z~4-8. The star formation rates (SFR) are in the range from 5-20 M_sol/yr. From this sample we measure a stellar mass density of 6.6_{-3.3}^{+5.4}x10^5 M_sol/Mpc^3 to a limit of M_{UV,AB}<-20 (or 0.4 L*(z=3)). Combined with a fiducial lower limit for their ages (80 Myr) this implies a maximum SFR density of 0.008 M_sol/yr/Mpc^3. This is well below the critical level needed to reionize the universe at z~8 using standard assumptions. However, this result is based on luminous sources (>L*) and does not include the dominant contribution of the fainter galaxies. Strikingly, we find that the specific SFR is constant from z~7 to z~2 but drops substantially at more recent times.
We carry out a multi-wavelength study of individual galaxies detected by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) and identified at other wavelengths, using data spanning the radio to the ultraviolet (UV). We develop a Monte Carlo method to account for flux boosting, source blending, and correlations among bands, which we use to derive deboosted far-infrared (FIR) luminosities for our sample. We estimate total star-formation rates for BLAST counterparts with z < 0.9 by combining their FIR and UV luminosities. Star formation is heavily obscured at L_FIR > 10^11 L_sun, z > 0.5, but the contribution from unobscured starlight cannot be neglected at L_FIR < 10^11 L_sun, z < 0.25. We assess that about 20% of the galaxies in our sample show indication of a type-1 active galactic nucleus (AGN), but their submillimeter emission is mainly due to star formation in the host galaxy. We compute stellar masses for a subset of 92 BLAST counterparts; these are relatively massive objects, with a median mass of ~10^11 M_sun, which seem to link the 24um and SCUBA populations, in terms of both stellar mass and star-formation activity. The bulk of the BLAST counterparts at z<1 appear to be run-of-the-mill star-forming galaxies, typically spiral in shape, with intermediate stellar masses and practically constant specific star-formation rates. On the other hand, the high-z tail of the BLAST counterparts significantly overlaps with the SCUBA population, in terms of both star-formation rates and stellar masses, with observed trends of specific star-formation rate that support strong evolution and downsizing.
It is well known that both the star formation rate and the cold gas content of a galaxy depend on the local density out to distances of a few Megaparsecs. In this paper, we compare the environmental density dependence of the atomic gas mass fractions of nearby galaxies with the density dependence of their central and global specific star formation rates. We stack HI line spectra extracted from the Arecibo Legacy Fast ALFA survey centered on galaxies with UV imaging from GALEX and optical imaging/spectroscopy from SDSS. We use these stacked spectra to evaluate the mean atomic gas mass fraction of galaxies in bins of stellar mass and local density. For galaxies with stellar masses less than 10^10.5 M_sun, the decline in mean atomic gas mass fraction with density is stronger than the decline in mean global and central specific star formation rate. The same conclusion does not hold for more massive galaxies. We interpret our results as evidence for ram-pressure stripping of atomic gas from the outer disks of low mass satellite galaxies. We compare our results with the semi-analytic recipes of Guo et al. (2011) implemented on the Millennium II simulation. These models assume that only the diffuse gas surrounding satellite galaxies is stripped, a process that is often termed strangulation. We show that these models predict relative trends in atomic gas and star formation that are in disagreement with observations. We use mock catalogues generated from the simulation to predict the halo masses of the HI-deficient galaxies in our sample. We conclude that ram-pressure stripping is likely to become effective in dark matter halos with masses greater than 10^13 M_sun.
128 - Maria E. De Rossi 2013
Cosmological hydrodynamical simulations are studied in order to analyse generic trends for the stellar, baryonic and halo mass assembly of low-mass galaxies (M_* < 3 x 10^10 M_sun) as a function of their present halo mass, in the context of the Lambda-CDM scenario and common subgrid physics schemes. We obtain that smaller galaxies exhibit higher specific star formation rates and higher gas fractions. Although these trends are in rough agreement with observations, the absolute values of these quantities tend to be lower than observed ones since z~2. The simulated galaxy stellar mass fraction increases with halo mass, consistently with semi-empirical inferences. However, the predicted correlation between them shows negligible variations up to high z, while these inferences seem to indicate some evolution. The hot gas mass in z=0 halos is higher than the central galaxy mass by a factor of ~1-1.5 and this factor increases up to ~5-7 at z~2 for the smallest galaxies. The stellar, baryonic and halo evolutionary tracks of simulated galaxies show that smaller galaxies tend to delay their baryonic and stellar mass assembly with respect to the halo one. The Supernova feedback treatment included in this model plays a key role on this behaviour albeit the trend is still weaker than the one inferred from observations. At z>2, the overall properties of simulated galaxies are not in large disagreement with those derived from observations.
The physical properties inferred from the SEDs of z>3 galaxies have been influential in shaping our understanding of early galaxy formation and the role galaxies may play in cosmic reionization. Of particular importance is the stellar mass density at early times which represents the integral of earlier star formation. An important puzzle arising from the measurements so far reported is that the specific star formation rates (sSFR) evolve far less rapidly than expected in most theoretical models. Yet the observations underpinning these results remain very uncertain, owing in part to the possible contamination of rest-optical broadband light from strong nebular emission lines. To quantify the contribution of nebular emission to broad-band fluxes, we investigate the SEDs of 92 spectroscopically-confirmed galaxies in the redshift range 3.8<z<5.0 chosen because the H-alpha line lies within the Spitzer/IRAC 3.6 um filter. We demonstrate that the 3.6 um flux is systematically in excess of that expected from stellar continuum, which we derive by fitting the SED with population synthesis models. No such excess is seen in a control sample at 3.1<z<3.6 in which there is no nebular contamination in the IRAC filters. From the distribution of our 3.6 um flux excesses, we derive an H-alpha equivalent width (EW) distribution. The mean rest-frame H-alpha EW we infer at 3.8<z<5.0 (270 A) indicates that nebular emission contributes at least 30% of the 3.6 um flux. Via our empirically-derived EW distribution we correct the available stellar mass densities and show that the sSFR evolves more rapidly at z>4 than previously thought, supporting up to a 5x increase between z~2 and 7. Such a trend is much closer to theoretical expectations. Given our findings, we discuss the prospects for verifying quantitatively the nebular emission line strengths prior to the launch of the James Webb Space Telescope.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا