No Arabic abstract
In this letter we present an overview of the rich population of systems with multiple candidate transiting planets found in the first four months of Kepler data. The census of multiples includes 115 targets that show 2 candidate planets, 45 with 3, 8 with 4, and 1 each with 5 and 6, for a total of 170 systems with 408 candidates. When compared to the 827 systems with only one candidate, the multiples account for 17 percent of the total number of systems, and a third of all the planet candidates. We compare the characteristics of candidates found in multiples with those found in singles. False positives due to eclipsing binaries are much less common for the multiples, as expected. Singles and multiples are both dominated by planets smaller than Neptune; 69 +2/-3 percent for singles and 86 +2/-5 percent for multiples. This result, that systems with multiple transiting planets are less likely to include a transiting giant planet, suggests that close-in giant planets tend to disrupt the orbital inclinations of small planets in flat systems, or maybe even to prevent the formation of such systems in the first place.
We present a test for spin-orbit alignment for the host stars of 25 candidate planetary systems detected by the {it Kepler} spacecraft. The inclination angle of each stars rotation axis was estimated from its rotation period, rotational line broadening, and radius. The rotation periods were determined using the {it Kepler} photometric time series. The rotational line broadening was determined from high-resolution optical spectra with Subaru/HDS. Those same spectra were used to determine the stars photospheric parameters (effective temperature, surface gravity, metallicity) which were then interpreted with stellar-evolutionary models to determine stellar radii. We combine the new sample with the 7 stars from our previous work on this subject, finding that the stars show a statistical tendency to have inclinations near 90$^circ$, in alignment with the planetary orbits. Possible spin-orbit misalignments are seen in several systems, including three multiple-planet systems (KOI-304, 988, 2261). Ideally these systems should be scrutinized with complementary techniques---such as the Rossiter-McLaughlin effect, starspot-crossing anomalies or asteroseismology---but the measurements will be difficult owing to the relatively faint apparent magnitudes and small transit signals in these systems.
We present new planet candidates identified in NASA Kepler quarter two public release data by volunteers engaged in the Planet Hunters citizen science project. The two candidates presented here survive checks for false-positives, including examination of the pixel offset to constrain the possibility of a background eclipsing binary. The orbital periods of the planet candidates are 97.46 days (KIC 4552729) and 284.03 (KIC 10005758) days and the modeled planet radii are 5.3 and 3.8 R_Earth. The latter star has an additional known planet candidate with a radius of 5.05 R_Earth and a period of 134.49 which was detected by the Kepler pipeline. The discovery of these candidates illustrates the value of massively distributed volunteer review of the Kepler database to recover candidates which were otherwise uncatalogued.
Ten days of commissioning data (Quarter 0) and thirty-three days of science data (Quarter 1) yield instrumental flux timeseries of ~150,000 stars that were combed for transit events, termed Threshold Crossing Events (TCE), each having a total detection statistic above 7.1-sigma. TCE light curves are modeled as star+planet systems. Those returning a companion radius smaller than 2R_J are assigned a KOI (Kepler Object of Interest) number. The raw flux, pixel flux, and flux-weighted centroids of every KOI are scrutinized to assess the likelihood of being an astrophysical false-positive versus the likelihood of a being a planetary companion. This vetting using Kepler data is referred to as data validation. Herein, we describe the data validation metrics and graphics used to identify viable planet candidates amongst the KOIs. Light curve modeling tests for a) the difference in depth of the odd- versus even-numbered transits, b) evidence of ellipsoidal variations, and c) evidence of a secondary eclipse event at phase=0.5. Flux-weighted centroids are used to test for signals correlated with transit events with a magnitude and direction indicative of a background eclipsing binary. Centroid timeseries are complimented by analysis of images taken in-transit versus out-of-transit, the difference often revealing the pixel contributing the most to the flux change during transit. Examples are shown to illustrate each test. Candidates passing data validation are submitted to ground-based observers for further false-positive elimination or confirmation/characterization.
We simulate a Kepler-like observation of a theoretical exoplanet population and we show that the observed orbital period distribution of the Kepler giant planet candidates is best matched by an average stellar specific dissipation function Q_* in the interval 10^6 ~< Q_* ~< 10^7. In that situation, the few super-Earths that are driven to orbital periods P < 1 day by dynamical interactions in multiple-planet systems will survive tidal disruption for a significant fraction of the main-sequence lifetimes of their stellar hosts. Consequently, though these very-hot super-Earths are not characteristic of the overall super-Earth population, their substantial transit probability implies that they should be significant contributors to the full super-Earth population uncovered by Kepler. As a result, the CoRoT-7 system may be the first representative of a population of very-hot super-Earths that we suggest should be found in multiple-planet systems preferentially orbiting the least-dissipative stellar hosts in the Kepler sample.
NASAs Kepler Mission uses transit photometry to determine the frequency of earth-size planets in or near the habitable zone of Sun-like stars. The mission reached a milestone toward meeting that goal: the discovery of its first rocky planet, Kepler-10b. Two distinct sets of transit events were detected: 1) a 152 +/- 4 ppm dimming lasting 1.811 +/- 0.024 hours with ephemeris T[BJD]=2454964.57375+N*0.837495 days and 2) a 376 +/- 9 ppm dimming lasting 6.86 +/- 0.07 hours with ephemeris T[BJD]=2454971.6761+N*45.29485 days. Statistical tests on the photometric and pixel flux time series established the viability of the planet candidates triggering ground-based follow-up observations. Forty precision Doppler measurements were used to confirm that the short-period transit event is due to a planetary companion. The parent star is bright enough for asteroseismic analysis. Photometry was collected at 1-minute cadence for >4 months from which we detected 19 distinct pulsation frequencies. Modeling the frequencies resulted in precise knowledge of the fundamental stellar properties. Kepler-10 is a relatively old (11.9 +/- 4.5 Gyr) but otherwise Sun-like Main Sequence star with Teff=5627 +/- 44 K, Mstar=0.895 +/- 0.060 Msun, and Rstar=1.056 +/- 0.021 Rsun. Physical models simultaneously fit to the transit light curves and the precision Doppler measurements yielded tight constraints on the properties of Kepler-10b that speak to its rocky composition: Mpl=4.56 +/- 1.29 Mearth, Rpl=1.416 +/- 0.036 Rearth, and density=8.8 +/- 2.9 gcc. Kepler-10b is the smallest transiting exoplanet discovered to date.