Do you want to publish a course? Click here

Transverse Beam Spin Asymmetries at Backward Angles in Elastic Electron-Proton and Quasi-elastic Electron-Deuteron Scattering

138   0   0.0 ( 0 )
 Added by Juliette Mammei
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

We have measured the beam-normal single-spin asymmetries in elastic scattering of transversely polarized electrons from the proton, and performed the first measurement in quasi-elastic scattering on the deuteron, at backward angles (lab scattering angle of 108 degrees) for Q2 = 0.22 GeV^2/c^2 and 0.63 GeV^2/c^2 at beam energies of 362 MeV and 687 MeV, respectively. The asymmetry arises due to the imaginary part of the interference of the two-photon exchange amplitude with that of single photon exchange. Results for the proton are consistent with a model calculation which includes inelastic intermediate hadronic (piN) states. An estimate of the beam-normal single-spin asymmetry for the scattering from the neutron is made using a quasi-static deuterium approximation, and is also in agreement with theory.



rate research

Read More

Quasi-elastic electron scattering on the deuteron is a benchmark reaction to test our understanding of deuteron structure and the properties and interactions of the two nucleons bound in the deuteron. The experimental data presented here can be used to test state-of-the-art models of the deuteron and the two-nucleon interaction in the final state after two-body breakup of the deuteron. Focusing on polarization degrees of freedom, we gain information on spin-momentum correlations in the deuteron ground state (due to the D-state admixture) and on the limits of the Impulse Approximation (IA) picture as it applies to measurements of spin-dependent observables like spin structure functions for bound nucleons. We measured the beam-target double spin asymmetry for quasi-elastic electron scattering off the deuteron at several beam energies using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The deuterons were polarized along (or opposite to) the beam direction. The double spin asymmetries were measured as a function of photon virtuality , missing momentum, and the angle between the (inferred) spectator neutron and the momentum transfer direction. The results are compared with a recent model that includes Final State Interactions (FSI) using a complete parameterization of nucleon-nucleon scattering, as well as a simplified model using the Plane Wave Impulse Approximation (PWIA). We find overall good agreement with both the PWIA and FSI expectations at low to medium missing momenta, including the change of the asymmetry due to the contribution of the deuteron D-state at higher momenta. At the highest missing momenta, our data clearly agree better with the calculations including FSI.
103 - B. Gou 2020
We report on a new measurement of the beam transverse single spin asymmetry in electron-proton elastic scattering, $A^{ep}_{perp}$, at five beam energies from 315.1 MeV to 1508.4 MeV and at a scattering angle of $30^{circ} < theta < 40^{circ}$. The covered $Q^2$ values are 0.032, 0.057, 0.082, 0.218, 0.613 (GeV/c)$^2$. The measurement clearly indicates significant inelastic contributions to the two-photon-exchange (TPE) amplitude in the low-$Q^2$ kinematic region. No theoretical calculation is able to reproduce our result. Comparison with a calculation based on unitarity, which only takes into account elastic and $mathrm{pi N}$ inelastic intermediate states, suggests that there are other inelastic intermediate states such as $mathrm{pi pi N}$, $mathrm{K Lambda}$ and $mathrm{eta N}$. Covering a wide energy range, our new high-precision data provide a benchmark to study those intermediate states.
Observables in elastic proton-deuteron scattering are sensitive probes of the nucleon-nucleon interaction and three-nucleon force effects. The present experimental data base for this reaction is large, but contains a large discrepancy between data sets for the differential cross section taken at 135 MeV/nucleon by two experimental research groups. This paper reviews the background of this problem and presents new data taken at KVI. Differential cross sections and analyzing powers for the $^{2}{rm H}(vec p,d){p}$ and ${rm H}(vec d,d){p}$ reactions at 135 MeV/nucleon and 65 MeV/nucleon, respectively, have been measured. The data differ significantly from previous measurements and consistently follow the energy dependence as expected from an interpolation of published data taken over a large range at intermediate energies.
We present measurements of differential cross sections and the analyzing powers A_y, iT11, T20, T21, and T22 at E_c.m.=431.3 keV. In addition, an excitation function of iT11(theta_c.m.=87.8 degrees) for 431.3 <= E_c.m. <= 2000 keV is presented. These data are compared to calculations employing realistic nucleon-nucleon interactions, both with and without three-nucleon forces. Excellent agreement with the tensor analyzing powers and cross section is found, while the Ay and iT11 data are found to be underpredicted by the calculations.
We report on a measurement of the tensor-analyzing power T20 in elastic electron-deuteron scattering in the range of four-momentum transfer from 1.8 to 3.2 fm-1. Electrons of 704 MeV were scattered from a polarized deuterium internal target. The tensor polarization of the deuterium nuclei was determined with an ion-extraction system, allowing an absolute measurement of T20. The data are described well by a non-relativistic calculation that includes the effects of meson-exchange currents.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا