No Arabic abstract
We study, both theoretically and experimentally, the occurrence of topological defects in polariton superfluids in the optical parametric oscillator (OPO) regime. We explain in terms of local supercurrents the deterministic behaviour of both onset and dynamics of spontaneous vortex-antivortex pairs generated by perturbing the system with a pulsed probe. Using a generalised Gross-Pitaevskii equation, including photonic disorder, pumping and decay, we elucidate the reason why topological defects form in couples and can be detected by direct visualizations in multi-shot OPO experiments.
We study non-equilibrium polariton superfluids in the optical parametric oscillator (OPO) regime using a two-component Gross-Pitaevskii equation with pumping and decay. We identify a regime above OPO threshold, where the system undergoes spontaneous symmetry breaking and is unstable towards vortex formation without any driving rotation. Stable vortex solutions differ from metastable ones; the latter can persist in OPO superfluids but can only be triggered externally. Both spontaneous and triggered vortices are characterised by a generalised healing length, specified by the OPO parameters only.
Polariton condensates have proved to be model systems to investigate topological defects, as they allow for direct and non-destructive imaging of the condensate complex order parameter. The fundamental topological excitations of such systems are quantized vortices. In specific configurations, further ordering can bring the formation of vortex lattices. In this work we demonstrate the spontaneous formation of ordered vortical states, consisting in geometrically self-arranged vortex-antivortex pairs. A mean-field generalized Gross-Pitaevskii model reproduces and supports the physics of the observed phenomenology.
We report on spin-vortex pair dynamics measured at temperatures low enough to suppress stochastic core motion, thereby uncovering the highly non-linear intrinsic dynamics of the system. Our analysis shows that the decoupling of the two vortex cores is resonant and can be enhanced by dynamic chaos. We detail the regions of the relevant parameter space, in which the various mechanisms of the resonant core-core dynamics are activated. We show that the presence of chaos can reduce the thermally-induced spread in the switching time by up to two orders of magnitude.
We investigate magnetic nano-pillars, in which two thin ferromagnetic nanoparticles are separated by a nanometer thin nonmagnetic spacer and can be set into stable spin vortex-pair configurations. The 16 ground states of the vortex-pair system are characterized by parallel or antiparallel chirality and parallel or antiparallel core-core alignment. We detect and differentiate these individual vortex-pair states experimentally and analyze their dynamics analytically and numerically. Of particular interest is the limit of strong core-core coupling, which we find can dominate the spin dynamics in the system. We observe that the 0.2 GHz gyrational resonance modes of the individual vortices are replaced with 2-6 GHz range collective rotational and vibrational core-core resonances in the configurations where the cores form a bound pair. These results demonstrate new opportunities in producing and manipulating spin states on the nanoscale and may prove useful for new types of ultra-dense storage devices where the information is stored as multiple vortex-core configurations.
A vortex-antivortex dipole can be generated due to current with in-plane spin-polarization, flowing into a magnetic element, which then behaves as a spin transfer oscillator. Its dynamics is analyzed using the Landau-Lifshitz equation including a Slonczewski spin-torque term. We establish that the vortex dipole is set in steady state rotational motion due to the interaction between the vortices, while an external in-plane magnetic field can tune the frequency of rotation. The rotational motion is linked to the nonzero skyrmion number of the dipole. The spin-torque acts to stabilize the vortex dipole at a definite vortex-antivortex separation distance. In contrast to a free vortex dipole, the rotating pair under spin-polarized current is an attractor of the motion, therefore a stable state. Three types of vortex-antivortex pairs are obtained as we vary the external field and spin-torque strength. We give a guide for the frequency of rotation based on analytical relations.