Do you want to publish a course? Click here

The Transit Light Curve project. XIV. Confirmation of Anomalous Radii for the Exoplanets TrES-4b, HAT-P-3b, and WASP-12b

94   0   0.0 ( 0 )
 Added by Joshua N. Winn
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present transit photometry of three exoplanets, TrES-4b, HAT-P-3b, and WASP-12b, allowing for refined estimates of the systems parameters. TrES-4b and WASP-12b were confirmed to be bloated planets, with radii of 1.706 +/- 0.056 R_Jup and 1.736 +/- 0.092 R_Jup, respectively. These planets are too large to be explained with standard models of gas giant planets. In contrast, HAT-P-3b has a radius of 0.827 +/- 0.055 R_Jup, smaller than a pure hydrogen-helium planet and indicative of a highly metal-enriched composition. Analyses of the transit timings revealed no significant departures from strict periodicity. For TrES-4, our relatively recent observations allow for improvement in the orbital ephemerides, which is useful for planning future observations.

rate research

Read More

We present Warm Spitzer/IRAC secondary eclipse time series photometry of three short-period transiting exoplanets, HAT-P-3b, HAT-P-4b and HAT-P-12b, in both the available 3.6 and 4.5 micron bands. HAT-P-3b and HAT-P-4b are Jupiter-mass, objects orbiting an early K and an early G dwarf stars, respectively. For HAT-P-3b we find eclipse depths of 0.112%+0.015%-0.030% (3.6 micron) and 0.094%+0.016%-0.009% (4.5 micron). The HAT-P-4b values are 0.142%+0.014%-0.016% (3.6 micron) and 0.122%+0.012%-0.014% (4.5micron). The two planets photometry is consistent with inefficient heat redistribution from their day to night sides (and low albedos), but it is inconclusive about possible temperature
We present a photometric follow-up of transiting exoplanets HAT-P-3b and TrES-3b, observed by using several optical and near-infrared filters, with four small-class telescopes (D = 36--152cm) in the Northern Hemisphere. Two of the facilities present their first scientific results. New 10 HAT-P-3b light curves and new 26 TrES-3b light curves are reduced and combined by filter in order to improve the quality of the photometry. Combined light curves fitting is carried out independently by using two different analysis packages, allowing the corroboration of the orbital and physical parameters in the literature. Results find no differences in the relative radius with the observing filter. In particular, we report for HAT-P-3b a first estimation of the planet-to-star radius Rp/R* = 0.1112+0.0025-0.0026 in the B band which is coherent with values found in the VRIzJH filters. Concerning TrES-3b, we derive a value for the orbital period of P = 1.3061862+-0.0000001 days which shows no linear variations over nine years of photometric observations.
We present new transit light curves for planets in six extrasolar planetary systems. They were acquired with 0.4-2.2 m telescopes located in west Asia, Europe, and South America. When combined with literature data, they allowed us to redetermine system parameters in a homogeneous way. Our results for individual systems are in agreement with values reported in previous studies. We refined transit ephemerides and reduced uncertainties of orbital periods by a factor between 2 and 7. No sign of any variations in transit times was detected for the planets studied.
Considering the importance of investigating the transit timing variations (TTVs) of transiting exoplanets, we present a follow-up study of HAT-P-12b. We include six new light curves observed between 2011 and 2015 from three different observatories, in association with 25 light curves taken from the published literature. The sample of the data used, thus covers a time span of about 10.2 years with a large coverage of epochs (1160) for the transiting events of the exoplanet HAT-P-12b. The light curves are used to determine the orbital parameters and conduct an investigation of possible transit timing variations. The new linear ephemeris shows a large value of reduced chi-square = 7.93, and the sinusoidal fitting using the prominent frequency coming from a periodogram shows a reduced chi-square around 4. Based on these values and the corresponding O-C diagrams, we suspect the presence of a possible non-sinusoidal TTV in this planetary system. Finally, we find that a scenario with an additional non-transiting exoplanet could explain this TTV with an even smaller reduced chi-square value of around 2.
We present observations of the Rossiter-McLaughlin effect for two exoplanetary systems, revealing the orientations of their orbits relative to the rotation axes of their parent stars. HAT-P-4b is prograde, with a sky-projected spin-orbit angle of lambda = -4.9 +/- 11.9 degrees. In contrast, HAT-P-14b is retrograde, with lambda = 189.1 +/- 5.1 degrees. These results conform with a previously noted pattern among the stellar hosts of close-in giant planets: hotter stars have a wide range of obliquities and cooler stars have low obliquities. This, in turn, suggests that three-body dynamics and tidal dissipation are responsible for the short-period orbits of many exoplanets. In addition, our data revealed a third body in the HAT-P-4 system, which could be a second planet or a companion star.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا