Do you want to publish a course? Click here

Four small puzzles that Rosetta doesnt solve

94   0   0.0 ( 0 )
 Added by Rhiju Das
 Publication date 2011
  fields Biology Physics
and research's language is English
 Authors Rhiju Das




Ask ChatGPT about the research

A complete macromolecule modeling package must be able to solve the simplest structure prediction problems. Despite recent successes in high resolution structure modeling and design, the Rosetta software suite fares poorly on deceptively small protein and RNA puzzles, some as small as four residues. To illustrate these problems, this manuscript presents extensive Rosetta results for four well-defined test cases: the 20-residue mini-protein Trp cage, an even smaller disulfide-stabilized conotoxin, the reactive loop of a serine protease inhibitor, and a UUCG RNA tetraloop. In contrast to previous Rosetta studies, several lines of evidence indicate that conformational sampling is not the major bottleneck in modeling these small systems. Instead, approximations and omissions in the Rosetta all-atom energy function currently preclude discriminating experimentally observed conformations from de novo models at atomic resolution. These molecular puzzles should serve as useful model systems for developers wishing to make foundational improvements to this powerful modeling suite.



rate research

Read More

166 - Daniel M. Zuckerman 2010
Equilibrium sampling of biomolecules remains an unmet challenge after more than 30 years of atomistic simulation. Efforts to enhance sampling capability, which are reviewed here, range from the development of new algorithms to parallelization to novel uses of hardware. Special focus is placed on classifying algorithms -- most of which are underpinned by a few key ideas -- in order to understand their fundamental strengths and limitations. Although algorithms have proliferated, progress resulting from novel hardware use appears to be more clear-cut than from algorithms alone, partly due to the lack of widely used sampling measures.
No existing algorithm can start with arbitrary RNA sequences and return the precise, three-dimensional structures that ensures their biological function. This chapter outlines current algorithms for automated RNA structure prediction (including our own FARNA-FARFAR), highlights their successes, and dissects their limitations, using a tetraloop and the sarcin/ricin motif as examples. The barriers to future advances are considered in light of three particular challenges: improving computational sampling, reducing reliance on experimentally solved structures, and avoiding coarse-grained representations of atomic-level interactions. To help meet these challenges and better understand the current state of the field, we propose an ongoing community-wide CASP-style experiment for evaluating the performance of current structure prediction algorithms.
DNA microarrays are devices that are able, in principle, to detect and quantify the presence of specific nucleic acid sequences in complex biological mixtures. The measurement consists in detecting fluorescence signals from several spots on the microarray surface onto which different probe sequences are grafted. One of the problems of the data analysis is that the signal contains a noisy background component due to non-specific binding. This paper presents a physical model for background estimation in Affymetrix Genechips. It combines two different approaches. The first is based on the sequence composition, specifically its sequence dependent hybridization affinity. The second is based on the strong correlation of intensities from locations which are the physical neighbors of a specific spot on the chip. Both effects are incorporated in a background functional which contains 24 free parameters, fixed by minimization on a training data set. In all data analyzed the sequence specific parameters, obtained by minimization, are found to strongly correlate with empirically determined stacking free energies for RNA/DNA hybridization in solution. Moreover, there is an overall agreement with experimental background data and we show that the physics-based model proposed in this paper performs on average better than purely statistical approaches for background calculations. The model thus provides an interesting alternative method for background subtraction schemes in Affymetrix Genechips.
We analytically derive the lower bound of the total conformational energy of a protein structure by assuming that the total conformational energy is well approximated by the sum of sequence-dependent pairwise contact energies. The condition for the native structure achieving the lower bound leads to the contact energy matrix that is a scalar multiple of the native contact matrix, i.e., the so-called Go potential. We also derive spectral relations between contact matrix and energy matrix, and approximations related to one-dimensional protein structures. Implications for protein structure prediction are discussed.
Understanding the mechanisms underlying ion channel function from the atomic-scale requires accurate ab initio modelling as well as careful experiments. Here, we present a density functional theory (DFT) study of the ion channel gramicidin A, whose inner pore conducts only monovalent cations and whose conductance has been shown to depend on the side chains of the amino acids in the channel. We investigate the ground-state geometry and electronic properties of the channel in vacuum, focusing on their dependence on the side chains of the amino acids. We find that the side chains affect the ground state geometry, while the electrostatic potential of the pore is independent of the side chains. This study is also in preparation for a full, linear scaling DFT study of gramicidin A in a lipid bilayer with surrounding water. We demonstrate that linear scaling DFT methods can accurately model the system with reasonable computational cost. Linear scaling DFT allows ab initio calculations with 10,000 to 100,000 atoms and beyond, and will be an important new tool for biomolecular simulations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا