No Arabic abstract
Phonon lifetime calculations from first principles usually rely on time consuming molecular dynamics calculations, or density functional perturbation theory (DFPT) where the zero temperature crystal structure is assumed to be dynamically stable. Here a new and effective method for calculating phonon lifetimes from first principles is presented, not limited to crystal structures stable at 0 K, and potentially much more effective than most corresponding molecular dynamics calculations. The method is based on the recently developed self consistent lattice dynamical method and is here tested by calculating the bcc phase phonon lifetimes of Li, Na, Ti and Zr, as representative examples.
Electron-phonon ($e$-ph) interactions are key to understanding the dynamics of electrons in materials, and can be modeled accurately from first-principles. However, when electrons and holes form Coulomb-bound states (excitons), quantifying their interactions and scattering processes with phonons remains an open challenge. Here we show a rigorous approach for computing exciton-phonon (ex-ph) interactions and the associated exciton dynamical processes from first principles. Starting from the ab initio Bethe-Salpeter equation, we derive expressions for the ex-ph matrix elements and relaxation times. We apply our method to bulk hexagonal boron nitride, for which we map the ex-ph relaxation times as a function of exciton momentum and energy, analyze the temperature and phonon-mode dependence of the ex-ph scattering processes, and accurately predict the phonon-assisted photoluminescence. The approach introduced in this work is general and provides a framework for investigating exciton dynamics in a wide range of materials.
Glasses are solid materials whose constituent atoms are arranged in a disordered manner. The transition from a liquid to a glass remains one of the most poorly understood phenomena in condensed matter physics, and still no fully microscopic theory exists that can describe the dynamics of supercooled liquids in a quantitative manner over all relevant time scales. Here we present such a theoretical framework that yields near-quantitative accuracy for the time-dependent correlation functions of a supercooled system over a broad density range. Our approach requires only simple static structural information as input and is based entirely based on first principles. Owing to this first-principles nature, the framework offers a unique platform to study the relation between structure and dynamics in glass-forming matter, and paves the way towards a systematically correctable and ultimately fully quantitative theory of microscopic glassy dynamics.
We present a first principles molecular dynamics approach that is based on time-reversible ex- tended Lagrangian Born-Oppenheimer molecular dynamics [Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The optimization-free dynamics keeps the computational cost to a minimum and typically provides molecular trajectories that closely follow the exact Born-Oppenheimer potential energy surface. Only one single diagonalization and Hamiltonian (or Fockian) costruction are required in each integration time step. The proposed dy- namics is derived for a general free-energy potential surface valid at finite electronic temperatures within hybrid density functional theory. Even in the event of irregular functional behavior that may cause a dynamical instability, the optimization-free limit represents an ideal starting guess for force calculations that may require a more elaborate iterative electronic ground state optimization. Our optimization-free dynamics thus represents a flexible theoretical framework for a broad and general class of ab initio molecular dynamics simulations.
An accurate and easily extendable method to deal with lattice dynamics of solids is offered. It is based on first-principles molecular dynamics simulations and provides a consistent way to extract the best possible harmonic - or higher order - potential energy surface at finite temperatures. It is designed to work even for strongly anharmonic systems where the traditional quasiharmonic approximation fails. The accuracy and convergence of the method are controlled in a straightforward way. Excellent agreement of the calculated phonon dispersion relations at finite temperature with experimental results for bcc Li and bcc Zr is demonstrated.
Lattice dynamical methods used to predict phase transformations in crystals typically deal with harmonic phonon spectra and are therefore not applicable in important situations where one of the competing crystal structures is unstable in the harmonic approximation, such as the bcc structure involved in the hcp to bcc martensitic phase transformation in Ti, Zr and Hf. Here we present an expression for the free energy that does not suffer from such shortcomings, and we show by self consistent {it ab initio} lattice dynamical calculations (SCAILD), that the critical temperature for the hcp to bcc phase transformation in Ti, Zr and Hf, can be effectively calculated from the free energy difference between the two phases. This opens up the possibility to study quantitatively, from first principles theory, temperature induced phase transitions.