Ground states for semi-relativistic Schrodinger-Poisson-Slater energies


Abstract in English

We prove the existence of ground states for the semi-relativistic Schrodinger-Poisson-Slater energy $$I^{alpha,beta}(rho)=inf_{substack{uin H^frac 12(R^3) int_{R^3}|u|^2 dx=rho}} frac{1}{2}|u|^2_{H^frac 12(R^3)} +alphaintint_{R^{3}timesR^{3}} frac{| u(x)|^{2}|u(y)|^2}{|x-y|}dxdy-betaint_{R^{3}}|u|^{frac{8}{3}}dx$$ $alpha,beta>0$ and $rho>0$ is small enough. The minimization problem is $L^2$ critical and in order to characterize of the values $alpha, beta>0$ such that $I^{alpha, beta}(rho)>-infty$ for every $rho>0$, we prove a new lower bound on the Coulomb energy involving the kinetic energy and the exchange energy. We prove the existence of a constant $S>0$ such that $$frac{1}{S}frac{|varphi|_{L^frac 83(R^3)}}{|varphi|_{dot H^frac 12(R^3)}^frac 12}leq left (intint_{R^3times R^3} frac{|varphi(x)|^2|varphi(y)|^2}{|x-y|}dxdyright)^frac 18 $$ for all $varphiin C^infty_0(R^3)$. Eventually we show that similar compactness property fails provided that in the energy above we replace the inhomogeneous Sobolev norm $|u|^2_{H^frac 12(R^3)}$ by the homogeneous one $|u|_{dot H^frac 12(R^3)}$.

Download