Do you want to publish a course? Click here

Propagation of thermal excitations in a cluster of vortices in superfluid 3He-B

206   0   0.0 ( 0 )
 Added by Jaakko Hosio
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe the first measurement on Andreev scattering of thermal excitations from a vortex configuration with known density, spatial extent, and orientations in 3He-B superfluid. The heat flow from a blackbody radiator in equilibrium rotation at constant angular velocity is measured with two quartz tuning fork oscillators. One oscillator creates a controllable density of excitations at 0.2Tc base temperature and the other records the thermal response. The results are compared to numerical calculations of ballistic propagation of thermal quasiparticles through a cluster of rectilinear vortices.



rate research

Read More

A profound change occurs in the stability of quantized vortices in externally applied flow of superfluid 3He-B at temperatures ~ 0.6 Tc, owing to the rapidly decreasing damping in vortex motion with decreasing temperature. At low damping an evolving vortex may become unstable and generate a new independent vortex loop. This single-vortex instability is the generic precursor to turbulence. We investigate the instability with non-invasive NMR measurements on a rotating cylindrical sample in the intermediate temperature regime (0.3 - 0.6) Tc. From comparisons with numerical calculations we interpret that the instability occurs at the container wall, when the vortex end moves along the wall in applied flow.
Kelvin waves or Kelvons have been known for a long time as gapless excitations propagating along superfluid vortices. These modes can be interpreted as the Nambu-Goldstone excitations arising from the spontaneous breaking of the translational symmetry. Recently a different type of gapless excitation localized on strings -- the so-called non-Abelian mode -- attracted much attention in high-energy physics. We discuss their relevance in condensed matter physics. Although we failed to find exactly gapless non-Abelian modes, non-Abelian rotational quasigapless excitations are argued to exist on the mass vortices in the B phase of the superfluid 3He, due to the fact that the order parameter in 3He-B is tensorial. While the U(1) rotational excitations are well established in vortices with asymmetric cores, the non-Abelian rotational excitations belonging to the same family were not considered. In the general case they are coupled with the translational modes.
The flow of quantized vortex lines in superfluid 3He-B is laminar at high temperatures, but below 0.6 Tc turbulence becomes possible, owing to the rapidly decreasing mutual friction damping. In the turbulent regime a vortex evolving in applied flow may become unstable, create new vortices, and start turbulence. We monitor this single-vortex instability with NMR techniques in a rotating cylinder. Close to the onset temperature of turbulence, an oscillating component in NMR absorption has been observed, while the instability generates new vortices at a low rate ~ 1 vortex/s, before turbulence sets in. By comparison to numerical calculations, we associate the oscillations with spiral vortex motion, when evolving vortices expand to rectilinear lines.
Vortex flow remains laminar up to large Reynolds numbers (Re~1000) in a cylinder filled with 3He-B. This is inferred from NMR measurements and numerical vortex filament calculations where we study the spin up and spin down responses of the superfluid component, after a sudden change in rotation velocity. In normal fluids and in superfluid 4He these responses are turbulent. In 3He-B the vortex core radius is much larger which reduces both surface pinning and vortex reconnections, the phenomena, which enhance vortex bending and the creation of turbulent tangles. Thus the origin for the greater stability of vortex flow in 3He-B is a quantum phenomenon. Only large flow perturbations are found to make the responses turbulent, such as the walls of a cubic container or the presence of invasive measuring probes inside the container.
We describe measurements of the decay of pure superfluid turbulence in superfluid 3He-B, in the low temperature regime where the normal fluid density is negligible. We follow the decay of the turbulence generated by a vibrating grid as detected by vibrating wire resonators. Despite the absence of any classical normal fluid dissipation processes, the decay is consistent with turbulence having the classical Kolmogorov energy spectrum and is remarkably similar to that measured in superfluid 4He at relatively high temperatures. Further, our results strongly suggest that the decay is governed by the superfluid circulation quantum rather than kinematic viscosity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا