No Arabic abstract
We develop a theoretical framework that combines measurements of galaxy-galaxy lensing, galaxy clustering, and the galaxy stellar mass function in a self-consistent manner. While considerable effort has been invested in exploring each of these probes individually, attempts to combine them are still in their infancy despite the potential of such combinations to elucidate the galaxy-dark matter connection, to constrain cosmological parameters, and to test the nature of gravity. In this paper, we focus on a theoretical model that describes the galaxy-dark matter connection based on standard halo occupation distribution techniques. Several key modifications enable us to extract additional parameters that determine the stellar-to-halo mass relation and to simultaneously fit data from multiple probes while allowing for independent binning schemes for each probe. In a companion paper, we demonstrate that the model presented here provides an excellent fit to galaxy-galaxy lensing, galaxy clustering, and stellar mass functions measured in the COSMOS survey from z=0.2 to z=1.0. We construct mock catalogs from numerical simulations to investigate the effects of sample variance and covariance on each of the three probes. Finally, we analyze and discuss how trends in each of the three observables impact the derived parameters of the model. In particular, we investigate the various features of the observed galaxy stellar mass function (low-mass slope, plateau, knee, and high-mass cut-off) and show how each feature is related to the underlying relationship between stellar and halo mass. We demonstrate that the observed plateau feature in the stellar mass function at Mstellar~2x10^10 Msun is due to the transition that occurs in the stellar-to-halo mass relation at Mhalo ~ 10^12 Msun from a low-mass power-law regime to a sub-exponential function at higher stellar mass.
The discovery of a relationship between supermassive black hole (SMBH) mass and spiral arm pitch angle (P) is evidence that SMBHs are tied to the overall secular evolution of a galaxy. The discovery of SMBHs in late-type galaxies with little or no bulge suggests that an underlying correlation between the dark matter halo concentration and SMBH mass (MBH) exists, rather than between the bulge mass and MBH. In this paper we measure P using a two-dimensional fast fourier transform and estimate the bar pattern speeds of 40 barred spiral galaxies from the Carnegie-Irvine Galaxy Survey. The pattern speeds were derived by estimating the gravitational potentials of our galaxies from Ks-band images and using them to produce dynamical simulation models. The pattern speeds allow us to identify those galaxies with low central dark halo densities, or fast rotating bars, while P provides an estimate of MBH. We find that a wide range of MBH exists in galaxies with low central dark matter halo densities, which appears to support other theoretical results. We also find that galaxies with low central dark halo densities appear to follow more predictable trends in P versus de Vaucouleurs morphological type (T) and bar strength versus T than barred galaxies in general. The empirical relationship between MBH and total gravitational mass of a galaxy (Mtot) allows us to predict the minimum Mtot that will be observationally measured of our fast bar galaxies. These predictions will be investigated in a subsequent paper.
Using estimates of dark halo masses from satellite kinematics, weak gravitational lensing, and halo abundance matching, combined with the Tully-Fisher and Faber-Jackson relations, we derive the mean relation between the optical, V_opt, and virial, V_200, circular velocities of early- and late-type galaxies at redshift z~0. For late-type galaxies V_opt ~ V_200 over the velocity range V_opt=90-260 km/s, and is consistent with V_opt = V_maxh (the maximum circular velocity of NFW dark matter haloes in the concordance LCDM cosmology). However, for early-type galaxies V_opt e V_200, with the exception of early-type galaxies with V_opt simeq 350 km/s. This is inconsistent with early-type galaxies being, in general, globally isothermal. For low mass (V_opt < 250 km/s) early-types V_opt > V_maxh, indicating that baryons have modified the potential well, while high mass (V_opt > 400 km/s) early-types have V_opt < V_maxh. Folding in measurements of the black hole mass - velocity dispersion relation, our results imply that the supermassive black hole - halo mass relation has a logarithmic slope which varies from ~1.4 at halo masses of ~10^{12} Msun/h to ~0.65 at halo masses of 10^{13.5} Msun/h. The values of V_opt/V_200 we infer for the Milky Way and M31 are lower than the values currently favored by direct observations and dynamical models. This offset is due to the fact that the Milky Way and M31 have higher V_opt and lower V_200 compared to typical late-type galaxies of the same stellar masses. We show that current high resolution cosmological hydrodynamical simulations are unable to form galaxies which simultaneously reproduce both the V_opt/V_200 ratio and the V_opt-M_star (Tully-Fisher/Faber-Jackson) relation.
It is a firm prediction of the concordance Cold Dark Matter (CDM) cosmological model that galaxy clusters live at the intersection of large-scale structure filaments. The thread-like structure of this cosmic web has been traced by galaxy redshift surveys for decades. More recently the Warm-Hot Intergalactic Medium (WHIM) residing in low redshift filaments has been observed in emission and absorption. However, a reliable direct detection of the underlying Dark Matter skeleton, which should contain more than half of all matter, remained elusive, as earlier candidates for such detections were either falsified or suffered from low signal-to-noise ratios and unphysical misalignements of dark and luminous matter. Here we report the detection of a dark matter filament connecting the two main components of the Abell 222/223 supercluster system from its weak gravitational lensing signal, both in a non-parametric mass reconstruction and in parametric model fits. This filament is coincident with an overdensity of galaxies and diffuse, soft X-ray emission and contributes mass comparable to that of an additional galaxy cluster to the total mass of the supercluster. Combined with X-ray observations, we place an upper limit of 0.09 on the hot gas fraction, the mass of X-ray emitting gas divided by the total mass, in the filament.
We use the Evolution and Assembly of GaLaxies and their Environments ( EAGLE ) suite of hydrodynamical cosmological simulations to measure offsets between the centres of stellar and dark matter components of galaxies. We find that the vast majority (>95%) of the simulated galaxies display an offset smaller than the gravitational softening length of the simulations (Plummer-equivalent $epsilon = 700$ pc), both for field galaxies and satellites in clusters and groups. We also find no systematic trailing or leading of the dark matter along a galaxys direction of motion. The offsets are consistent with being randomly drawn from a Maxwellian distribution with $sigma leq 196$ pc. Since astrophysical effects produce no feasible analogues for the $1.62^{+0.47}_{-0.49}$ kpc offset recently observed in Abell 3827, the observational result is in tension with the collisionless cold dark matter model assumed in our simulations.
We study how halo intrinsic dynamical properties are linked to their formation processes for halos in two mass ranges, $10^{12}-10^{12.5}h^{-1}{rm M_odot}$ and $ge 10^{13}h^{-1}{rm M_odot}$, and how both are correlated with the large scale tidal field within which the halos reside at present. Halo merger trees obtained from cosmological $N$-body simulations are used to identify infall halos that are about to merge with their hosts. We find that the tangential component of the infall velocity increases significantly with the strength of the local tidal field, but no strong correlation is found for the radial component. These results can be used to explain how the internal velocity anisotropy and spin of halos depend on environment. The position vectors and velocities of infall halos are aligned with the principal axes of the local tidal field, and the alignment depends on the strength of the tidal field. Opposite accretion patterns are found in weak and strong tidal fields, in the sense that in a weak field the accretion flow is dominated by radial motion within the local structure, while a large tangential component is present in a strong field. These findings can be used to understand the strong alignments we find between the principal axes of the internal velocity ellipsoids of halos and the local tidal field, and their dependence on the strength of tidal field. They also explain why halo spin increases with the strength of local tidal field, but only in weak tidal fields does the spin-tidal field alignment follow the prediction of the tidal torque theory. We discuss how our results may be used to understand the spins of disk galaxies and velocity structures of elliptical galaxies and their correlations with large-scale structure.