Do you want to publish a course? Click here

Lattice QCD Applications on QPACE

147   0   0.0 ( 0 )
 Added by Tilo Wettig
 Publication date 2011
  fields
and research's language is English




Ask ChatGPT about the research

QPACE is a novel massively parallel architecture optimized for lattice QCD simulations. A single QPACE node is based on the IBM PowerXCell 8i processor. The nodes are interconnected by a custom 3-dimensional torus network implemented on an FPGA. The compute power of the processor is provided by 8 Synergistic Processing Units. Making efficient use of these accelerator cores in scientific applications is challenging. In this paper we describe our strategies for porting applications to the QPACE architecture and report on performance numbers.



rate research

Read More

QPACE is a novel parallel computer which has been developed to be primarily used for lattice QCD simulations. The compute power is provided by the IBM PowerXCell 8i processor, an enhanced version of the Cell processor that is used in the Playstation 3. The QPACE nodes are interconnected by a custom, application optimized 3-dimensional torus network implemented on an FPGA. To achieve the very high packaging density of 26 TFlops per rack a new water cooling concept has been developed and successfully realized. In this paper we give an overview of the architecture and highlight some important technical details of the system. Furthermore, we provide initial performance results and report on the installation of 8 QPACE racks providing an aggregate peak performance of 200 TFlops.
182 - Huey-Wen Lin 2012
Study of the hadronic matrix elements can provide not only tests of the QCD sector of the Standard Model (in comparing with existing experiments) but also reliable low-energy hadronic quantities applicable to a wide range of beyond-the-Standard Model scenarios where experiments or theoretical calculations are limited or difficult. On the QCD side, progress has been made in the notoriously difficult problem of addressing gluonic structure inside the nucleon, reaching higher-$Q^2$ region of the form factors, and providing a complete picture of the proton spin. However, even further study and improvement of systematic uncertainties are needed. There are also proposed calculations of higher-order operators in the neutron electric dipole moment Lagrangian, which would be useful when combined with effective theory to probe BSM. Lattice isovector tensor and scalar charges can be combined with upcoming neutron beta-decay measurements of the Fierz interference term and neutrino asymmetry parameter to probe new interactions in the effective theory, revealing the scale of potential new TeV particles. Finally, I revisit the systematic uncertainties in recent calculations of $g_A$ and review prospects for future calculations.
118 - Andrea Nobile 2011
We discuss the implementation and optimization challenges for a Wilson-Dirac solver with Clover term on QPACE, a parallel machine based on Cell processors and a torus network. We choose the mixed-precision Schwarz preconditioned FGCR algorithm in order to circumvent network bandwidth and latency constraints, to make efficient use of the multicore parallelism and on-chip memory, and to achieve flexibility in the choice of lattice sizes. We present benchmarks on up to 256 QPACE nodes showing an aggregate sustained performance of about 10 TFlops for the complete solver and very good scaling.
We describe our experience porting the Regensburg implementation of the DD-$alpha$AMG solver from QPACE 2 to QPACE 3. We first review how the code was ported from the first generation Intel Xeon Phi processor (Knights Corner) to its successor (Knights Landing). We then describe the modifications in the communication library necessitated by the switch from InfiniBand to Omni-Path. Finally, we present the performance of the code on a single processor as well as the scaling on many nodes, where in both cases the speedup factor is close to the theoretical expectations.
88 - R. Iwami , S. Ejiri , K. Kanaya 2015
The reweighting method is widely used in numerical studies of QCD, in particular, for the cases in which the conventional Monte-Carlo method cannot be applied directly, e.g., finite density QCD. However, the application range of the reweighing method is restricted due to several problems. One of the most severe problems here is the overlap problem. To solve it, we examine a multipoint reweighting method in which simulations at several simulation points are combined in the data analyses. We systematically study the applicability and limitation of the multipoint reweighting method in two-flavor QCD at zero density. Measuring histograms of physical quantities at a series of simulation points, we apply the multipoint reweighting method to calculate the meson masses as continuous functions of the gauge coupling $beta$ and the hopping parameters $kappa$. We then determine lines of constant physics and beta functions, which are needed in a calculation of the equation of state at finite temperature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا