No Arabic abstract
We compute the magnetic susceptibility of the quark condensate and the polarization of quarks at zero temperature and in a uniform magnetic background. Our theoretical framework consists of two chiral models that allow to treat self-consistently the spontaneous breaking of chiral symmetry: the linear $sigma-$model coupled to quarks, dubbed quark-meson model, and the Nambu-Jona-Lasinio model. We also perform analytic estimates of the same quantities within the renormalized quark-meson model, both in the regimes of weak and strong fields. Our numerical results are in agreement with the recent literature; moreover, we confirm previous Lattice findings, related to the saturation of the polarization at large fields.
We present two-loop results for the quark condensate in an external magnetic field within chiral perturbation theory using coordinate space techniques. At finite temperature, we explore the impact of the magnetic field on the pion-pion interaction in the quark condensate for arbitrary pion masses and derive the correct weak magnetic field expansion in the chiral limit. At zero temperature, we provide the complete two-loop representation for the vacuum energy density and the quark condensate.
We reanalyse the topological susceptibility assuming the possibility of a significant paramagnetic suppression of the three-flavour quark condensate and a correlated enhancement of vacuum fluctuations of $sbar{s}$ pairs. Using the framework of resummed ChPT, we point out that simulations performed near the physical point, with a significant mass hierarchy between u,d and s dynamical quarks, are not able to disentangle the contributions from the quark condensate and sea $sbar{s}$-pair fluctuations, and that simulations with three light quark masses of the same order are better suited for this purpose. We perform a combined fit of recent RBC/UKQCD data on pseudoscalar masses and decay constants as well as the topological susceptibility, and we reconsider the determination of lattice spacings in our framework, working out the consequences on the parameters of the chiral Lagrangian. We obtain Sigma(3;2 GeV)^1/3=243 pm 12 MeV for the three-flavour quark condensate in the chiral limit. We notice a significant suppression compared to the two-flavour quark condensate Sigma(2;2 GeV)/Sigma(3;2 GeV)=1.51pm 0.11 and we confirm previous findings of a competition between leading order and next-to-leading order contributions in three-flavour chiral series.
We have computed the chiral susceptibility in quark-gluon plasma in presence of finite chemical potential and weak magnetic field within hard thermal loop approximation. First we construct the massive effective quark propagator in a thermomagnetic medium. Then we obtain completely analytic expression for the chiral susceptibility in weak magnetic field approximation. In the absence of magnetic field the thermal chiral susceptibility increases in presence of finite chemical potential. The effect of thermomagnetic correction is found to be very marginal as temperature is the dominant scale in weak field approximation.
Considering the strong field approximation we compute the hard thermal loop pressure at finite temperature and chemical potential of hot and dense deconfined QCD matter in lowest Landau level in one-loop order. We consider the anisotropic pressure in the presence of the strong magnetic field i.e., longitudinal and transverse pressure along parallel and perpendicular to the magnetic field direction. As a first effort, we compute and discuss the anisotropic quark number susceptibility of deconfined QCD matter in lowest Landau level. The longitudinal quark number susceptibility is found to increase with the temperature whereas the transverse one decreases with the temperature. We also compute the quark number susceptibility in the weak field approximation. We find that the thermomagnetic correction to the quark number susceptibility is very marginal in the weak field approximation.
Our renormalization group consistent variant of optimized perturbation, RGOPT, is used to calculate the nonperturbative QCD spectral density of the Dirac operator and the related chiral quark condensate $langle bar q q rangle$, for $n_f=2$ and $n_f=3$ massless quarks. Sequences of approximations at two-, three-, and four-loop orders are very stable and give $langle bar q q rangle^{1/3}_{n_f=2}(2, {rm GeV}) = -(0.833-0.845) barLambda_2 $, and $ langle bar q q rangle^{1/3}_{n_f=3}(2, {rm GeV}) = -(0.814-0.838) barLambda_3 $ where the range is our estimated theoretical error and $barLambda_{n_f}$ the basic QCD scale in the $rm bar{MS}$-scheme. We compare those results with other recent determinations (from lattice calculations and spectral sum rules).