We consider the transfer of classical and quantum information through a memory amplitude damping channel. Such a quantum channel is modeled as a damped harmonic oscillator, the interaction between the information carriers - a train of qubits - and the oscillator being of the Jaynes-Cummings kind. We prove that this memory channel is forgetful, so that quantum coding theorems hold for its capacities. We analyze entropic quantities relative to two uses of this channel. We show that memory effects improve the channel aptitude to transmit both classical and quantum information, and we investigate the mechanism by which memory acts in changing the channel transmission properties.