We determine the complexity of several constraint satisfaction problems using the heuristic algorithm, WalkSAT. At large sizes N, the complexity increases exponentially with N in all cases. Perhaps surprisingly, out of all the models studied, the hardest for WalkSAT is the one for which there is a polynomial time algorithm.
We study the phase diagram and the algorithmic hardness of the random `locked constraint satisfaction problems, and compare them to the commonly studied non-locked problems like satisfiability of boolean formulas or graph coloring. The special property of the locked problems is that clusters of solutions are isolated points. This simplifies significantly the determination of the phase diagram, which makes the locked problems particularly appealing from the mathematical point of view. On the other hand we show empirically that the clustered phase of these problems is extremely hard from the algorithmic point of view: the best known algorithms all fail to find solutions. Our results suggest that the easy/hard transition (for currently known algorithms) in the locked problems coincides with the clustering transition. These should thus be regarded as new benchmarks of really hard constraint satisfaction problems.
We introduce and study the random locked constraint satisfaction problems. When increasing the density of constraints, they display a broad clustered phase in which the space of solutions is divided into many isolated points. While the phase diagram can be found easily, these problems, in their clustered phase, are extremely hard from the algorithmic point of view: the best known algorithms all fail to find solutions. We thus propose new benchmarks of really hard optimization problems and provide insight into the origin of their typical hardness.
The set of solutions of random constraint satisfaction problems (zero energy groundstates of mean-field diluted spin glasses) undergoes several structural phase transitions as the amount of constraints is increased. This set first breaks down into a large number of well separated clusters. At the freezing transition, which is in general distinct from the clustering one, some variables (spins) take the same value in all solutions of a given cluster. In this paper we study the critical behavior around the freezing transition, which appears in the unfrozen phase as the divergence of the sizes of the rearrangements induced in response to the modification of a variable. The formalism is developed on generic constraint satisfaction problems and applied in particular to the random satisfiability of boolean formulas and to the coloring of random graphs. The computation is first performed in random tree ensembles, for which we underline a connection with percolation models and with the reconstruction problem of information theory. The validity of these results for the original random ensembles is then discussed in the framework of the cavity method.
Finite-domain constraint satisfaction problems are either solvable by Datalog, or not even expressible in fixed-point logic with counting. The border between the two regimes coincides with an important dichotomy in universal algebra; in particular, the border can be described by a strong height-one Maltsev condition. For infinite-domain CSPs, the situation is more complicated even if the template structure of the CSP is model-theoretically tame. We prove that there is no Maltsev condition that characterizes Datalog already for the CSPs of first-order reducts of (Q;<); such CSPs are called temporal CSPs and are of fundamental importance in infinite-domain constraint satisfaction. Our main result is a complete classification of temporal CSPs that can be expressed in one of the following logical formalisms: Datalog, fixed-point logic (with or without counting), or fixed-point logic with the Boolean rank operator. The classification shows that many of the equivalent conditions in the finite fail to capture expressibility in Datalog or fixed-point logic already for temporal CSPs.
Random constraint satisfaction problems undergo several phase transitions as the ratio between the number of constraints and the number of variables is varied. When this ratio exceeds the satisfiability threshold no more solutions exist; the satisfiable phase, for less constrained problems, is itself divided in an unclustered regime and a clustered one. In the latter solutions are grouped in clusters of nearby solutions separated in configuration space from solutions of other clusters. In addition the rigidity transition signals the appearance of so-called frozen variables in typical solutions: beyond this threshold most solutions belong to clusters with an extensive number of variables taking the same values in all solutions of the cluster. In this paper we refine the description of this phenomenon by estimating the location of the freezing transition, corresponding to the disappearance of all unfrozen solutions (not only typical ones). We also unveil phase transitions for the existence and uniqueness of locked solutions, in which all variables are frozen. From a technical point of view we characterize atypical solutions with a number of frozen variables different from the typical value via a large deviation study of the dynamics of a stripping process (whitening) that unveils the frozen variables of a solution, building upon recent works on atypical trajectories of the bootstrap percolation dynamics. Our results also bear some relevance from an algorithmic perspective, previous numerical studies having shown that heuristic algorithms of various kinds usually output unfrozen solutions.
Marco Guidetti
,A. P. Young
.
(2011)
.
"Complexity of several constraint satisfaction problems using the heuristic, classical, algorithm, WalkSAT"
.
A. Peter Young
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا