Do you want to publish a course? Click here

On the effective Dirac dynamics of ultracold atoms in bichromatic optical lattices

326   0   0.0 ( 0 )
 Added by Dirk Witthaut
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the dynamics of ultracold atoms in tailored bichromatic optical lattices. By tuning the lattice parameters, one can readily engineer the band structure and realize a Dirac point, i.e. a true crossing of two Bloch bands. The dynamics in the vicinity of such a crossing is described by the one-dimensional Dirac equation, which is rigorously shown beyond the tight-binding approximation. Within this framework we analyze the effects of an external potential and demonstrate numerically that it is possible to demonstrate Klein tunneling with current experimental setups.



rate research

Read More

195 - L. Lepori , G. Mussardo , 2010
We propose the experimental realization of (3+1) relativistic Dirac fermions using ultracold atoms in a rotating optical lattice or, alternatively, in a synthetic magnetic field. This approach has the advantage to give mass to the Dirac fermions by coupling the ultracold atoms to a Bragg pulse. A dimensional crossover from (3+1) to (2+1) Dirac fermions can be obtained by varying the anisotropy of the lattice. We also discuss under which conditions the interatomic potentials give rise to relativistically invariant interactions among the Dirac fermions.
Atomic interferometry in optical lattices is a new trend of developing practical quantum gravimeter. Here, we propose a compact and portable gravimetry scheme with an ensemble of ultracold atoms in gravitationally tilted spin-dependent optical lattices. The fast, coherent separation and recombination of atoms can be realized via polarization-synthesized optical lattices. The input atomic wavepacket is coherently split into two parts by a spin-dependent shift and a subsequent $frac{pi}{2}$ pulse. Then the two parts are held for accumulating a relative phase related to the gravity. Lastly the two parts are recombined for interference by a $frac{pi}{2}$ pulse and a subsequent spin-dependent shift. The $frac{pi}{2}$ pulses not only preclude the spin-dependent energies in the accumulated phase, but also avoid the error sources such as dislocation of optical lattices in the holding process. In addition, we develop an analytical method for the sensitivity in multi-path interferometry.
231 - Z. Lan , A. Celi , W. Lu 2011
We show that multiple layered Dirac cones can emerge in the band structure of properly addressed multicomponent cold fermionic gases in optical lattices. The layered Dirac cones contain multiple copies of massless spin-1/2 Dirac fermions at the {it same}location in momentum space, whose different Fermi velocity can be tuned at will. On-site microwave Raman transitions can further be used to mix the different Dirac species, resulting in either splitting of or preserving the Dirac point (depending on the symmetry of the on-site term). The tunability of the multiple layered Dirac cones allows to simulate a number of fundamental phenomena in modern physics, such as neutrino oscillations and exotic particle dispersions with $Esim p^N $ for arbitrary integer $N$.
Mean-field dynamics of strongly interacting bosons described by hard core bosons with nearest-neighbor attraction has been shown to support two species of solitons: one of Gross-Pitaevskii (GP-type) where the condensate fraction remains dark and a novel non-Gross-Pitaevskii-type (non-GP-type) characterized by brightening of the condensate fraction. Here we study the effects of quantum fluctuations on these solitons using the adaptive time-dependent density matrix renormalization group method, which takes into account the effect of strong correlations. We use local observables as the density, condensate density and correlation functions as well as the entanglement entropy to characterize the stability of the initial states. We find both species of solitons to be stable under quantum evolution for a finite duration, their tolerance to quantum fluctuations being enhanced as the width of the soliton increases. We describe possible experimental realizations in atomic Bose Einstein Condensates, polarized degenerate Fermi gases, and in systems of polar molecules on optical lattices.
We propose to use fermionic atoms with degenerate ground and excited internal levels ($F_grightarrow F_e$), loaded into the motional ground state of an optical lattice with two atoms per lattice site, to realize dark states with no radiative decay. The physical mechanism behind the dark states is an interplay of Pauli blocking and multilevel dipolar interactions. The dark states are independent of lattice geometry, can support an extensive number of excitations and can be coherently prepared using a Raman scheme taking advantage of the quantum Zeno effect. These attributes make them appealing for atomic clocks, quantum memories, and quantum information on decoherence free subspaces.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا