Do you want to publish a course? Click here

Many-body Physics with Alkaline-Earth Rydberg lattices

140   0   0.0 ( 0 )
 Added by Rick Mukherjee
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the prospects for confining alkaline-earth Rydberg atoms in an optical lattice via optical dressing of the secondary core valence electron. Focussing on the particular case of strontium, we identify experimentally accessible magic wavelengths for simultaneous trapping of ground and Rydberg states. A detailed analysis of relevant loss mechanisms shows that the overall lifetime of such a system is limited only by the spontaneous decay of the Rydberg state, and is not significantly affected by photoionization or autoionization. The van der Waals C_6 coefficients for the 5sns series are calculated, and we find that the interactions are attractive. Finally we show that the combination of magic-wavelength lattices and attractive interactions could be exploited to generate many-body Greenberger-Horne-Zeilinger (GHZ) states.



rate research

Read More

182 - B. Olmos , D. Yu , Y. Singh 2012
Alkaline-earth-metal atoms exhibit long-range dipolar interactions, which are generated via the coherent exchange of photons on the 3P_0-3D_1-transition of the triplet manifold. In case of bosonic strontium, which we discuss here, this transition has a wavelength of 2.7 mu m and a dipole moment of 2.46 Debye, and there exists a magic wavelength permitting the creation of optical lattices that are identical for the states 3P_0 and 3D_1. This interaction enables the realization and study of mixtures of hard-core lattice bosons featuring long-range hopping, with tuneable disorder and anisotropy. We derive the many-body Master equation, investigate the dynamics of excitation transport and analyze spectroscopic signatures stemming from coherent long-range interactions and collective dissipation. Our results show that lattice gases of alkaline-earth-metal atoms permit the creation of long-lived collective atomic states and constitute a simple and versatile platform for the exploration of many-body systems with long-range interactions. As such, they represent an alternative to current related efforts employing Rydberg gases, atoms with large magnetic moment, or polar molecules.
Trapped neutral atoms have become a prominent platform for quantum science, where entanglement fidelity records have been set using highly-excited Rydberg states. However, controlled two-qubit entanglement generation has so far been limited to alkali species, leaving the exploitation of more complex electronic structures as an open frontier that could lead to improved fidelities and fundamentally different applications such as quantum-enhanced optical clocks. Here we demonstrate a novel approach utilizing the two-valence electron structure of individual alkaline-earth Rydberg atoms. We find fidelities for Rydberg state detection, single-atom Rabi operations, and two-atom entanglement surpassing previously published values. Our results pave the way for novel applications, including programmable quantum metrology and hybrid atom-ion systems, and set the stage for alkaline-earth based quantum computing architectures.
We develop an approach to generate finite-range atomic interactions via optical Rydberg-state excitation and study the underlying excitation dynamics in theory and experiment. In contrast to previous work, the proposed scheme is based on resonant optical driving and the establishment of a dark state under conditions of electromagnetically induced transparency (EIT). Analyzing the driven dissipative dynamics of the atomic gas, we show that the interplay between coherent light coupling, radiative decay and strong Rydberg-Rydberg atom interactions leads to the emergence of sizeable effective interactions while providing remarkably long coherence times. The latter are studied experimentally in a cold gas of strontium atoms for which the proposed scheme is most efficient. Our measured atom loss is in agreement with the theoretical prediction based on binary effective interactions between the driven atoms.
Over the last decade, systems of individually-controlled neutral atoms, interacting with each other when excited to Rydberg states, have emerged as a promising platform for quantum simulation of many-body problems, in particular spin systems. Here, we review the techniques underlying quantum gas microscopes and arrays of optical tweezers used in these experiments, explain how the different types of interactions between Rydberg atoms allow a natural mapping onto various quantum spin models, and describe recent results that were obtained with this platform to study quantum many-body physics.
Apropos to the growing interest in the study of long-range interactions which for their applications in cold atom physics, we have performed theoretical calculation for the two-dipole $C_6$ and three-dipole $C_9$ dispersion coefficients involving alkaline-earth atoms with alkaline-earth atoms and alkaline-earth ions. The $C_6$ and $C_9$ coefficients are expressed in terms of the dynamic dipole polarizabilities, which are calculated using relativistic methods. Thereafter, the calculated $C_6$ coefficients for the considered alkaline-earth atoms among themselves are compared with the previously reported values. Due to unavailability of any other earlier theoretical or experimental results, for the $C_6$ coefficients for alkaline-earth atoms with alkaline-earth ions and the $C_9$ coefficients, we have performed separate fitting calculations and compared. Our calculations match in an excellent manner with the fitting calculations. We have also reported the oscillator strengths for the leading transitions and static dipole polarizabilities for the ground states of the alkaline-earth ions, i.e., Mg$^+$, Ca$^+$, Sr$^+$, and Ba$^+$ as well as the alkaline-earth atoms, i.e., Mg, Ca, Sr, and Ba. These, when compared with the available experimental results, show good agreement.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا