Do you want to publish a course? Click here

Variability and Multiwavelength Detected AGN in the GOODS Fields

163   0   0.0 ( 0 )
 Added by Vicki Sarajedini
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We identify 85 variable galaxies in the GOODS North and South fields using 5 epochs of HST ACS V-band (F606W) images spanning 6 months. The variables are identified through significant flux changes in the galaxys nucleus and represent ~2% of the survey galaxies. With the aim of studying the active galaxy population in the GOODS fields, we compare the variability-selected sample with X-ray and mid-IR AGN candidates. Forty-nine percent of the variables are associated with X-ray sources identified in the 2Ms Chandra surveys. Twenty-four percent of X-ray sources likely to be AGN are optical variables and this percentage increases with decreasing hardness ratio of the X-ray emission. Stacking of the non-X-ray detected variables reveals marginally significant soft X-ray emission. Forty-eight percent of mid-IR power-law sources are optical variables, all but one of which are also X-ray detected. Thus, about half of the optical variables are associated with either X-ray or mid-IR power-law emission. The slope of the power-law fit through the Spitzer IRAC bands indicates that two-thirds of the variables have BLAGN-like SEDs. Among those galaxies spectroscopically identified as AGN, we observe variability in 74% of broad-line AGNs and 15% of NLAGNs. The variables are found in galaxies extending to z~3.6. We compare the variable galaxy colors and magnitudes to the X-ray and mid-IR sample and find that the non-X-ray detected variable hosts extend to bluer colors and fainter intrinsic magnitudes. The variable AGN candidates have Eddington ratios similar to those of X-ray selected AGN.



rate research

Read More

70 - Brent M. Smith 2020
We present our analysis of the LyC emission and escape fraction of 111 spectroscopically verified galaxies with and without AGN from $2.26<z<4.3$. We extended our ERS sample from Smith et al. (2018; arXiv:1602.01555) with 64 galaxies in the GOODS North and South fields using WFC3/UVIS F225W, F275W, and F336W mosaics we independently drizzled using the HDUV, CANDELS, and UVUDF data. Among the 17 AGN from the 111 galaxies, one provided a LyC detection in F275W at $m_{AB}=23.19$ mag (S/N $simeq$ 133) and $GALEX$ NUV at $m_{AB}=23.77$ mag (S/N $simeq$ 13). We simultaneously fit $SDSS$ and $Chandra$ spectra of this AGN to an accretion disk and Comptonization model and find $f_{esc}$ values of $f_{esc}^{F275W}simeq 28^{+20}_{-4}$% and $f_{esc}^{NUV}simeq 30^{+22}_{-5}$%. For the remaining 110 galaxies, we stack image cutouts that capture their LyC emission using the F225W, F275W, and F336W data of the GOODS and ERS samples, and both combined, as well as subsamples of galaxies with and without AGN, and $all$ galaxies. We find the stack of 17 AGN dominate the LyC production from $langle zranglesimeq 2.3-4.3$ by a factor of $sim$10 compared to all 94 galaxies without AGN. While the IGM of the early universe may have been reionized mostly by massive stars, there is evidence that a significant portion of the ionizing energy came from AGN.
We present the characterization and initial results from the QUEST-La Silla AGN variability survey. This is an effort to obtain well sampled optical light curves in extragalactic fields with unique multi-wavelength observations. We present photometry obtained from 2010 to 2012 in the XMM-COSMOS field, which was observed over 150 nights using the QUEST camera on the ESO-Schmidt telescope. The survey uses a broadband filter, the $Q$-band, similar to the union of the $g$ and the $r$ filters, achieving an intrinsic photometric dispersion of $0.05$ mag, and a systematic error of $0.05$ mag in the zero-point. Since some detectors of the camera show significant non-linearity, we use a linear correlation to fit the zero-points as a function of the instrumental magnitudes, thus obtaining a good correction to the non-linear behavior of these detectors. We obtain good photometry to an equivalent limiting magnitude of $rsim 20.5$. Studying the optical variability of X-ray detected sources in the XMM-COSMOS field, we find that the survey is $sim75-80$% complete to magnitudes $rsim20$, and $sim67$% complete to a magnitude $rsim21$. The determination and parameterization of the structure function (${SF}_{norm}(tau) = A tau^{gamma}$) of the variable sources shows that most BL AGN are characterized by $A > 0.1$ and $gamma > 0.025$. It is further shown that variable NL AGN and GAL sources occupying the same parameter space in $A$ and $gamma$ are very likely to correspond to obscured or low luminosity AGN. Our samples are, however, small, and we expect to revisit these results using larger samples with longer light curves obtained as part of our ongoing survey.
Low radio frequency surveys are important for testing unified models of radio-loud quasars and radio galaxies. Intrinsically similar sources that are randomly oriented on the sky will have different projected linear sizes. Measuring the projected linear sizes of these sources provides an indication of their orientation. Steep-spectrum isotropic radio emission allows for orientation-free sample selection at low radio frequencies. We use a new radio survey of the Bootes field at 150 MHz made with the Low Frequency Array (LOFAR) to select a sample of radio sources. We identify 44 radio galaxies and 16 quasars with powers $P>10^{25.5}$ W Hz$^{-1}$ at 150 MHz using cross-matched multi-wavelength information from the AGN and Galaxy Evolution Survey (AGES), which provides spectroscopic redshifts. We find that LOFAR-detected radio sources with steep spectra have projected linear sizes that are on average 4.4$pm$1.4 larger than those with flat spectra. The projected linear sizes of radio galaxies are on average 3.1$pm$1.0 larger than those of quasars (2.0$pm$0.3 after correcting for redshift evolution). Combining these results with three previous surveys, we find that the projected linear sizes of radio galaxies and quasars depend on redshift but not on power. The projected linear size ratio does not correlate with either parameter. The LOFAR data is consistent within the uncertainties with theoretical predictions of the correlation between the quasar fraction and linear size ratio, based on an orientation-based unification scheme.
146 - Ryan C. Hickox 2009
Large extragalactic surveys allow us to trace, in a statistical sense, how supermassive black holes, their host galaxies, and their dark matter halos evolve together over cosmic time, and so explore the consequences of AGN feedback on galaxy evolution. Recent studies have found significant links between the accretion states of black holes and galaxy stellar populations, local environments, and obscuration by gas and dust. This article describes some recent results and shows how such studies may provide new constraints on models of the co-evolution of galaxies and their central SMBHs. Finally, I discuss observational prospects for the proposed Wide-Field X-ray Telescope mission.
We present a study of galaxies showing mid-infrared variability in the deepest Spitzer/MIPS 24 $mu$m surveys in the GOODS-South field. We divide the dataset in epochs and subepochs to study the long-term (months-years) and the short-term (days) variability. We use a $chi^2$-statistics method to select AGN candidates with a probability $leq$ 1% that the observed variability is due to statistical errors alone. We find 39 (1.7% of the parent sample) sources that show long-term variability and 55 (2.2% of the parent sample) showing short-term variability. We compare our candidates with AGN selected in the X-ray and radio bands, and AGN candidates selected by their IR emission. Approximately, 50% of the MIPS 24 $mu$m variable sources would be identified as AGN with these other methods. Therefore, MIPS 24 $mu$m variability is a new method to identify AGN candidates, possibly dust obscured and low luminosity AGN that might be missed by other methods. However, the contribution of the MIPS 24 $mu$m variable identified AGN to the general AGN population is small ($leq$ 13%) in GOODS-South.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا