No Arabic abstract
We report five new transit epochs of the extrasolar planet OGLE-TR-111b, observed in the v-HIGH and Bessell I bands with the FORS1 and FORS2 at the ESO Very Large Telescope, between April and May 2008. The new transits have been combined with all previously published transit data for this planet to provide a new Transit Timing Variations (TTVs) analysis of its orbit. We discard TTVs with amplitudes larger than 1.5 minutes over a 4-year observation time baseline, in agreement with the recent result by Adams et al.(2010a). Dynamical simulations fully exclude the presence of additional planets in the system with masses greater than 1.3, 0.4 and 0.5 M_earth at the 3:2, 1:2, 2:1 resonances, respectively. We also place an upper limit of about 30 M_earth on the mass of potential second planets in the region between the 3:2 and 1:2 mean-motion resonances.
We present high precision K-band photometry of the transit and secondary eclipse of extrasolar planet OGLE-TR-113, using the SOFI near-infrared instrument on ESOs NTT. Data were taken in 5 second exposures over two periods of 3-4 hours, using random jitter position offsets. In this way, a relative photometric precision of ~1% per frame was achieved, avoiding systematic effects that seem to become dominant at precisions exceeding this level, and resulting in an overall accuracy of 0.1% per ~10 minutes. The observations of the transit show a flat bottom light-curve indicative of a significantly lower stellar limb-darkening at near-infrared than at optical wavelengths. The observations of the secondary eclipse result in a 3 sigma detection of emission from the exoplanet at 0.17+-0.05%. However, residual systematic errors make this detection rather tentative.
Two consecutive transits of planetary companion OGLE-TR-111b were observed in the I band. Combining these observations with data from the literature, we find that the timing of the transits cannot be explained by a constant period, and that the observed variations cannot be originated by the presence of a satellite. However, a perturbing planet with the mass of the Earth in an exterior orbit could explain the observations if the orbit of OGLE-TR-111b is eccentric. We also show that the eccentricity needed to explain the observations is not ruled out by the radial velocity data found in the literature.
Context: Repeated observations of exoplanet transits allow us to refine the planetary parameters and probe them for any time dependent variations. In particular deviations of the period from a strictly linear ephemeris, transit timing variations (TTVs), can indicate the presence of additional bodies in the planetary system. Aims: Our goal was to reexamine the largely unstudied OGLE2-TR-L9 system with high cadence, multi-color photometry in order to refine the planetary parameters and probe the system for TTVs. Methods: We observed five full transits of OGLE2-TR-L9 with the GROND instrument at the ESO/MPG 2.2 m telescope at La Silla Observatory. GROND is a multichannel imager that allowed us to gather simultaneous light curves in the g, r, i, and z filters. Results: From our analysis we find that the semi-major axis and the inclination differ from the previously published values. With the newly observed transits, we were able to refine the ephemeris to 2454492.80008(+/- 0.00014) + 2.48553417(+/- 6.4) x 10^-7 E. The newly derived parameters are a=0.0418 (+/- 0.0015) AU, r_p =1.67 (+/- 0.05) R_j, and inc=82.47{deg} (+/- 0.12), differing significantly in a and inc from the previously published values. Within our data, we find indications for TTVs.
We report on the detection of the secondary eclipse of the very-hot Jupiter OGLE-TR-56b from combined z-band time series photometry obtained with the VLT and Magellan telescopes. We measure a flux decrement of 0.0363+/-0.0091 percent from the combined Magellan and VLT datasets, which indicates a blackbody brightness temperature of 2718 (+127/-107) K, a very low albedo, and a small incident radiation redistribution factor, indicating a lack of strong winds in the planets atmosphere. The measured secondary depth is consistent with thermal emission, but our precision is not sufficient to distinguish between a black-body emitting planet, or emission as predicted by models with strong optical absorbers such as TiO/VO. This is the first time that thermal emission from an extrasolar planet is detected at optical wavelengths and with ground-based telescopes.
In the context of the TraMoS project we present nine new transit observations of the exoplanet OGLE-TR-113b observed with the Gemini South, Magellan Baade, Danish-1.54m and SOAR telescopes. We perform a homogeneous analysis of these new transits together with ten literature transits to probe into the potential detection of an orbital decay for this planet reported by citet{adams2010}. Our new observations extend the transit monitoring baseline for this system by 6 years, to a total of more than 13 years. With our timing analysis we obtained a $dot{P}=-1.0 pm 6.0$ ms~yr$^{-1}$, which rejects previous hints of a larger orbital decay for OGLE-TR-113b. With our updated value of $dot{P}$ we can discard tidal quality factors of $Q_{star} < 10^{5}$ for its host star. Additionally, we calculate a 1$sigma$ dispersion of the Transit Timing Variations (TTVs) of 42 seconds over the 13 years baseline, which discards additional planets in the system more massive than $0.5-3.0~M_{oplus}$ in 1:2, 5:3, 2:1 and 3:1 Mean Motion Resonances with OGLE-TR-113b. Finally, with the joint analysis of the 19 light curves we update transit parameters, such as the relative semi-major axis $a / R_s = 6.44^{+0.04}_{-0.05}$, the planet-to-star radius ratio $R_p / R_s =0.14436^{+0.00096}_{-0.00088}$, and constrains its orbital inclination to $i =89.27^{+0.51}_{-0.68}$~degrees.