No Arabic abstract
We have explored the buildup of the local mass-size relation of elliptical galaxies using two visually classified samples. At low redshift we compiled a subsample of 2,656 elliptical galaxies from SDSS, whereas at higher redshift (up to z~1) we extracted a sample of 228 object from the HST/ACS images of the GOODS. All the galaxies in our study have spectroscopic data, allowing us to determine the age and mass of the stellar component. Using the fossil record information contained in the stellar populations of our local sample, we do not find any evidence for an age segregation at a given stellar mass depending on the size of the galaxies. At a fixed dynamical mass there is only a <9% size difference in the two extreme age quartiles of our sample. Consequently, the local evidence does not support a scenario whereby the present-day mass-size relation has been progressively established via a bottom-up sequence, where older galaxies occupy the lower part this relation, remaining in place since their formation. We find a trend in size that is insensitive to the age of the stellar populations, at least since z~1. This result supports the idea that the stellar mass-size relation is formed at z~1, with all galaxies populating a region which roughly corresponds to 1/2 of the present size distribution. The fact that the evolution in size is independent of stellar age, together with the absence of an increase in the scatter of the relationship with redshift does not support the puffing up mechanism. The observational evidence, however, can not reject at this stage the minor merging hypothesis. We have made an estimation of the number of minor merger events necessary to bring the high-z galaxies into the local relation compatible with the observed size evolution. Since z=0.8, if the merger mass ratio is 1:3 we estimate ~3+-1 minor mergers and if the ratio is 1:10 we obtain ~8+-2 events.
In this paper we measure the merger fraction and rate, both minor and major, of massive early-type galaxies (M_star >= 10^11 M_Sun) in the COSMOS field, and study their role in mass and size evolution. We use the 30-band photometric catalogue in COSMOS, complemented with the spectroscopy of the zCOSMOS survey, to define close pairs with a separation 10h^-1 kpc <= r_p <= 30h-1 kpc and a relative velocity Delta v <= 500 km s^-1. We measure both major (stellar mass ratio mu = M_star,2/M_star,1 >= 1/4) and minor (1/10 <= mu < 1/4) merger fractions of massive galaxies, and study their dependence on redshift and on morphology. The merger fraction and rate of massive galaxies evolves as a power-law (1+z)^n, with major mergers increasing with redshift, n_MM = 1.4, and minor mergers showing little evolution, n_mm ~ 0. When split by their morphology, the minor merger fraction for early types is higher by a factor of three than that for spirals, and both are nearly constant with redshift. Our results show that massive early-type galaxies have undergone 0.89 mergers (0.43 major and 0.46 minor) since z ~ 1, leading to a mass growth of ~30%. We find that mu >= 1/10 mergers can explain ~55% of the observed size evolution of these galaxies since z ~ 1. Another ~20% is due to the progenitor bias (younger galaxies are more extended) and we estimate that very minor mergers (mu < 1/10) could contribute with an extra ~20%. The remaining ~5% should come from other processes (e.g., adiabatic expansion or observational effects). This picture also reproduces the mass growth and velocity dispersion evolution of these galaxies. We conclude from these results that merging is the main contributor to the size evolution of massive ETGs at z <= 1, accounting for ~50-75% of that evolution in the last 8 Gyr. Nearly half of the evolution due to mergers is related to minor (mu < 1/4) events.
We carry out a systematic study of the recently discovered fundamental plane of galaxy clusters (CFP) using a sample of ~250 simulated clusters from the 300th project, focusing on the stability of the plane against different temperature definitions and its dependence on the dynamical relaxation state of clusters. The CFP is characterised in the form of $T propto M_s^alpha r_s^beta$, defined with the gas temperature ($T$) and the characteristic halo scale radius and mass ($r_s$ and $M_s$) assuming an NFW halo description. We explore two definitions of weighted temperatures, namely mass-weighted and spectroscopic-like temperatures, in three radial ranges: [0.1, 1.0]$r_{200}$, [0.15,1.0]$r_{500}$, and [50,500]$h^{-1}$ kpc. We find that 300th clusters at $z=0$ lie on a thin plane whose parameters ($alpha, beta$) and dispersion (0.015--0.030 dex) depend on the gas temperature definition. The CFP for mass-weighted temperatures is closer to the virial equilibrium expectation ($alpha=1, beta=-1$) with a smaller dispersion. When gas temperatures are measured inside 500$h^{-1}$ kpc, which is close to the median value of $r_s$, the resulting CFP deviates the most from the virial expectation and shifts towards the similarity solution for a secondary infall model ($alpha=1.5, beta=-2$). Independently of the temperature definition, we find that clusters at $z=1$ form a CFP similar to the virial expectation. At all epochs, the CFP remains well defined throughout the evolution of the cluster population. The CFP of relaxed clusters is always close to the virial expectation, with a milder evolution than for the unrelaxed case. We find that only systems formed over the last 4 Gyr have a CFP that is closer to the self-similar solution. All these findings are compatible with the CFP obtained for a CLASH subsample excluding the hottest clusters with $T_X>12$ keV.
We follow the structural evolution of star forming galaxies (SFGs) like the Milky Way by selecting progenitors to z~1.3 based on the stellar mass growth inferred from the evolution of the star forming sequence. We select our sample from the 3D-HST survey, which utilizes spectroscopy from the HST WFC3 G141 near-IR grism and enables precise redshift measurements for our sample of SFGs. Structural properties are obtained from Sersic profile fits to CANDELS WFC3 imaging. The progenitors of z=0 SFGs with stellar mass M=10^{10.5} Msun are typically half as massive at z~1. This late-time stellar mass assembly is consistent with recent studies that employ abundance matching techniques. The descendant SFGs at z~0 have grown in half-light radius by a factor of ~1.4 since z~1. The half-light radius grows with stellar mass as r_e M^{0.29}. While most of the stellar mass is clearly assembling at large radii, the mass surface density profiles reveal ongoing mass growth also in the central regions where bulges and pseudobulges are common features in present day late-type galaxies. Some portion of this growth in the central regions is due to star formation as recent observations of H-alpha maps for SFGs at z~1 are found to be extended but centrally peaked. Connecting our lookback study with galactic archeology, we find the stellar mass surface density at R=8 kpc to have increased by a factor of ~2 since z~1, in good agreement with measurements derived for the solar neighborhood of the Milky Way.
We present the star formation rate (SFR) and starburst fraction (SBF) for a sample of field galaxies from the ICBS intermediate-redshift cluster survey. We use [O II] and Spitzer 24 micron fluxes to measure SFRs, and 24 micron fluxes and H-delta absorption to measure of SBFs, for both our sample and a present-epoch field sample from the Sloan Digital Sky Survey (SDSS) and Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. We find a precipitous decline in the SFR since z=1, in agreement with other studies, as well as a corresponding rapid decline in the fraction of galaxies undergoing long-duration moderate-amplitude starbursts. We suggest that the change in both the rate and mode of star formation could result from the strong decrease since z=1 of gas available for star formation.
A large fraction of the stellar mass in galaxy clusters is thought to be contained in the diffuse low surface brightness intracluster light (ICL). Being bound to the gravitational potential of the cluster rather than any individual galaxy, the ICL contains much information about the evolution of its host cluster and the interactions between the galaxies within. However due its low surface brightness it is notoriously difficult to study. We present the first detection and measurement of the flux contained in the ICL at z~1. We find that the fraction of the total cluster light contained in the ICL may have increased by factors of 2-4 since z~1, in contrast to recent findings for the lack of mass and scale size evolution found for brightest cluster galaxies. Our results suggest that late time buildup in cluster cores may occur more through stripping than merging and we discuss the implications of our results for hierarchical simulations.