No Arabic abstract
Considering galaxies as self - gravitating systems of many collisionless particles allows to use methods of statistical mechanics inferring the distribution function of these stellar systems. Actually, the long range nature of the gravitational force contrasts with the underlying assumptions of Boltzmann statistics where the interactions among particles are assumed to be short ranged. A particular generalization of the classical Boltzmann formalism is available within the nonextensive context of Tsallis q -statistics, subject to non -additivity of the entropies of sub - systems. Assuming stationarity and isotropy in the velocity space, it is possible solving the generalized collsionless Boltzmann equation to derive the galaxy distribution function and density profile. We present a particular set of nonextensive models and investigate their dynamical and observable properties. As a test of the viability of this generalized context, we fit the rotation curve of M33 showing that the proposed approach leads to dark matter haloes in excellent agreement with the observed data.
We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse depends on the initial comoving size of the inhomogeneity.
We study the formation and evolution of filamentary configurations of dark matter haloes in voids. Our investigation uses the high-resolution LambdaCDM simulation CosmoGrid to look for void systems resembling the VGS_31 elongated system of three interacting galaxies that was recently discovered by the Void Galaxy Survey (VGS) inside a large void in the SDSS galaxy redshift survey. HI data revealed these galaxies to be embedded in a common elongated envelope, possibly embedded in intravoid filament. In the CosmoGrid simulation we look for systems similar to VGS_31 in mass, size and environment. We find a total of eight such systems. For these systems, we study the distribution of neighbour haloes, the assembly and evolution of the main haloes and the dynamical evolution of the haloes, as well as the evolution of the large-scale structure in which the systems are embedded. The spatial distribution of the haloes follows that of the dark matter environment. We find that VGS_31-like systems have a large variation in formation time, having formed between 10 Gyr ago and the present epoch. However, the environments in which the systems are embedded evolved resemble each other substantially. Each of the VGS_31-like systems is embedded in an intra-void wall, that no later than z = 0.5 became the only prominent feature in its environment. While part of the void walls retain a rather featureless character, we find that around half of them are marked by a pronounced and rapidly evolving substructure. Five haloes find themselves in a tenuous filament of a few Mpc/h long inside the intra-void wall. Finally, we compare the results to observed data from VGS_31. Our study implies that the VGS_31 galaxies formed in the same (proto)filament, and did not meet just recently. The diversity amongst the simulated halo systems indicates that VGS_31 may not be typical for groups of galaxies in voids.
A new equilibrium pressure profile extending the Rigid-Rotor (RR) model with a simple unified expression $P=P(psi;beta_{s},alpha, sigma)$ for both inside and outside the separatrix is proposed, in which the radial normalized field-reversed configuration (FRC) equilibrium profiles for pressure, magnetic field, and current can be determined by only two dimensionless parameters $beta_sequiv P_s/2mu_0B_e^2$ and $delta_sequiv L_{ps}/R_s$, where $P_s$ is the thermal pressure at the separatrix, $B_e$ is the external magnetic field strength, $L_{ps}$ is the pressure profile scale length at the separatrix, and $R_s$ is the separatrix radius. This modified rigid rotor (MRR) model has sufficient flexibility to accommodate the narrow scrape of layer (SOL) width and hollow current density profiles, and can be used to fit experimental measurements satisfactorily. Detailed one-dimensional (1D) characteristics of the new MRR model are investigated analytically and numerically, and the results are also confirmed in two-dimensional (2D) numerical equilibrium solutions.
The influence of considering a generalized dark matter (GDM) model, which allows for a non-pressure-less dark matter and a non-vanishing sound speed in the non-linear spherical collapse model is discussed for the Einstein-de Sitter-like (EdSGDM) and $Lambda$GDM models. By assuming that the vacuum component responsible for the accelerated expansion of the Universe is not clustering and therefore behaving similarly to the cosmological constant $Lambda$, we show how the change in the GDM characteristic parameters affects the linear density threshold for collapse of the non-relativistic component ($delta_{rm c}$) and its virial overdensity ($Delta_{rm V}$). We found that the generalized dark matter equation of state parameter $w_{rm gdm}$ is responsible for lower values of the linear overdensity parameter as compared to the standard spherical collapse model and that this effect is much stronger than the one induced by a change in the generalized dark matter sound speed $c^2_{rm s, gdm}$. We also found that the virial overdensity is only slightly affected and mostly sensitive to the generalized dark matter equation of state parameter $w_{rm gdm}$. These effects could be relatively enhanced for lower values of the matter density. Finally, we found that the effects of the additional physics on $delta_{rm c}$ and $Delta_{rm V}$, when translated to non-linear observables such as the halo mass function, induce an overall deviation of about 40% with respect to the standard $Lambda$CDM model at late times for high mass objects. However, within the current linear constraints for $c^2_{rm s, gdm}$ and $w_{rm gdm}$, we found that these changes are the consequence of properly taking into account the correct linear matter power spectrum for the GDM model while the effects coming from modifications in the spherical collapse model remain negligible.
We discuss experimental constraints on the free parameter of the nonextensive kinetic theory from measurements of the thermal dispersion relation in a collisionless plasma. For electrostatic plane-wave propagation, we show through a statistical analysis that a good agreement between theory and experiment is possible if the allowed values of the $q$-parameter are restricted by $q=0.77 pm 0.03$ at 95% confidence level (or equivalently, $2-q = 1.23$, in the largely adopted convention for the entropy index $q$). Such a result rules out (by a large statistical margin) the standard Bohm-Gross dispersion relation which is derived assuming that the stationary Maxwellian distribution ($q=1$) is the unperturbed solution.