Do you want to publish a course? Click here

On different types of instabilities in black hole accretion discs. Implications for X-ray binaries and AGN

144   0   0.0 ( 0 )
 Added by Agnieszka Janiuk
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss two important instability mechanisms that may lead to the limit-cycle oscillations of the luminosity of the accretion disks around compact objects: ionization instability and radiation-pressure instability. Ionization instability is well established as a mechanism of X-ray novae eruptions in black hole binary systems but its applicability to AGN is still problematic. Radiation pressure theory has still very weak observational background in any of these sources. In the present paper we attempt to confront the parameter space of these instabilities with the observational data. At the basis of this simple survey of sources properties we argue that the radiation pressure instability is likely to be present in several Galactic sources with the Eddington ratios above 0.15, and in AGN with the Eddington ratio above 0.025. Our results favor the parameterization of the viscosity through the geometrical mean of the radiation and gas pressure both in Galactic sources and AGN. More examples of the quasi-regular outbursts in the timescales of 100 seconds in Galactic sources, and hundreds of years in AGN are needed to formulate firm conclusions. We also show that the disk sizes in the X-ray novae are consistent with the ionization instability. This instability may also considerably influence the lifetime cycle and overall complexity in the supermassive black hole environment.



rate research

Read More

We want to test if self-similar magneto-hydrodynamic (MHD) accretion-ejection models can explain the observational results for accretion disk winds in BHBs. In our models, the density at the base of the outflow, from the accretion disk, is not a free parameter, but is determined by solving the full set of dynamical MHD equations without neglecting any physical term. Different MHD solutions were generated for different values of (a) the disk aspect ratio ($varepsilon$) and (b) the ejection efficiency ($p$). We generated two kinds of MHD solutions depending on the absence (cold solution) or presence (warm solution) of heating at the disk surface. The cold MHD solutions are found to be inadequate to account for winds due to their low ejection efficiency. The warm solutions can have sufficiently high values of $p (gtrsim 0.1)$ which is required to explain the observed physical quantities in the wind. The heating (required at the disk surface for the warm solutions) could be due to the illumination which would be more efficient in the Soft state. We found that in the Hard state a range of ionisation parameter is thermodynamically unstable, which makes it impossible to have any wind at all, in the Hard state. Our results would suggest that a thermo-magnetic process is required to explain winds in BHBs.
X-ray flux from the inner hot region around central compact object in a binary system illuminates the upper surface of an accretion disc and it behaves like a corona. This region can be photoionised by the illuminating radiation, thus can emit different emission lines. We study those line spectra in black hole X-ray binaries for different accretion flow parameters including its geometry. The varying range of model parameters captures maximum possible observational features. We also put light on the routinely observed Fe line emission properties based on different model parameters, ionization rate, and Fe abundances. We find that the Fe line equivalent width $W_{rm E}$ decreases with increasing disc accretion rate and increases with the column density of the illuminated gas. Our estimated line properties are in agreement with observational signatures.
We use Very Long Baseline Interferometry to measure the proper motions of three black hole X-ray binaries (BHXBs). Using these results together with data from the literature and Gaia-DR2 to collate the best available constraints on proper motion, parallax, distance and systemic radial velocity of 16 BHXBs, we determined their three dimensional Galactocentric orbits. We extended this analysis to estimate the probability distribution for the potential kick velocity (PKV) a BHXB system could have received on formation. Constraining the kicks imparted to BHXBs provides insight into the birth mechanism of black holes (BHs). Kicks also have a significant effect on BH-BH merger rates, merger sites, and binary evolution, and can be responsible for spin-orbit misalignment in BH binary systems. $75%$ of our systems have potential kicks $>70,rm{km~s^{-1}}$. This suggests that strong kicks and hence spin-orbit misalignment might be common among BHXBs, in agreement with the observed quasi-periodic X-ray variability in their power density spectra. We used a Bayesian hierarchical methodology to analyse the PKV distribution of the BHXB population, and suggest that a unimodal Gaussian model with a mean of $107pm16,rm{km~s^{-1}}$ is a statistically favourable fit. Such relatively high PKVs would also reduce the number of BHs likely to be retained in globular clusters. We found no significant correlation between the BH mass and PKV, suggesting a lack of correlation between BH mass and the BH birth mechanism. Our Python code allows the estimation of the PKV for any system with sufficient observational constraints.
At the final stages of a supermassive black hole coalescence, the emission of gravitational waves will efficiently remove energy and angular momentum from the binary orbit, allowing the separation between the compact objects to shrink. In the scenario where a circumprimary disc is present, a squeezing phase will develop, in which the tidal interaction between the disc and the secondary black hole could push the gas inwards, enhancing the accretion rate on to the primary and producing what is known as an electromagnetic precursor. In this context, using 3D hydrodynamic simulations, we study how an adiabatic circumprimary accretion disc responds to the varying gravitational potential as the secondary falls onto the more massive object. We included a cooling prescription controlled by the parameter beta = Omega t_{cool}, which will determine how strong the final accretion rate is: a hotter disc is thicker, and the tidal interaction is suppressed for the gas outside the binary plane. Our main results are that for scenarios where the gas cannot cool fast enough (beta>30) the disc becomes thick and renders the system invisible, while for beta<10 the strong cooling blocks any leakage on to the secondarys orbit, allowing an enhancement in the accretion rate two orders of magnitude stronger than the average through the rest of the simulation.
INTEGRAL is an ESA mission in fundamental astrophysics that was launched in October 2002. It has been in orbit for over 18 years, during which it has been observing the high-energy sky with a set of instruments specifically designed to probe the emission from hard X-ray and soft gamma-ray sources. This paper is devoted to the subject of black hole binaries, which are among the most important sources that populate the high-energy sky. We present a review of the scientific literature based on INTEGRAL data, which has significantly advanced our knowledge in the field of relativistic astrophysics. We briefly summarise the state-of-the-art of the study of black hole binaries, with a particular focus on the topics closer to the INTEGRAL science. We then give an overview of the results obtained by INTEGRAL and by other observatories on a number of sources of importance in the field. Finally, we review the main results obtained over the past 18 years on all the black hole binaries that INTEGRAL has observed. We conclude with a summary of the main contributions of INTEGRAL to the field, and on the future perspectives.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا