Do you want to publish a course? Click here

The Dirt on Dry Mergers

127   0   0.0 ( 0 )
 Added by Vandana Desai
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using data from the Spitzer Space Telescope, we analyze the mid-infrared (3-70 micron) spectral energy distributions of dry merger candidates in the Bootes field of the NOAO Deep Wide-Field Survey. These candidates were selected by previous authors to be luminous, red, early-type galaxies with morphological evidence of recent tidal interactions. We find that a significant fraction of these candidates exhibit 8 and 24 micron excesses compared to expectations for old stellar populations. We estimate that a quarter of dry merger candidates have mid-infrared-derived star formation rates greater than ~1 MSun/yr. This represents a frosting on top of a large old stellar population, and has been seen in previous studies of elliptical galaxies. Further, the dry merger candidates include a higher fraction of starforming galaxies relative to a control sample without tidal features. We therefore conclude that the star formation in these massive ellipticals is likely triggered by merger activity. Our data suggest that the mergers responsible for the observed tidal features were not completely dry, and may be minor mergers involving a gas-rich dwarf galaxy.



rate research

Read More

Hierarchical models predict that present-day massive early-type galaxies (mETGs) have finished their assembly at a quite late cosmic epoch (z~0.5), conflicting directly with galaxy mass-downsizing. In Eliche-Moral et al. (2010), we presented a semi-analytical model that predicts the increase by a factor of ~2.5 observed in the number density of mETGs since z~1 to the present, just accounting for the effects of the major mergers strictly-reported by observations. Here, we describe the relative, coordinated role of wet, mixed, and dry major mergers in driving this assembly. Accordingly to observations, the model predicts that: 1) wet major mergers have controlled the mETGs buildup since z~1, although dry and mixed mergers have also contributed significantly to it; 2) the bulk of this assembly takes place during the ~1.4 Gyr time-period elapsed at 0.7<z<1, being nearly frozen at z<~0.7; 3) this frostbite can be explained just accounting for the observational decrease of the major merger fraction since z~0.7, implying that major mergers (and, in particular, dry events) have contributed negligibly to the mETGs assembly during the last ~6.3 Gyr; and 4) major mergers are responsible for doubling the stellar mass at the massive-end of the red sequence since z~1. The most striking model prediction is that at least ~87% of the mETGs existing at z~1 are not the passively-evolved, high-z counterparts of present-day mETGs, but their gas-poor progenitors instead. This implies that <~5% of present-day mETGs have been really in place since z~1. The model derives a redshift of final assembly for present-day mETGs in agreement with hierarchical models (z~0.5), reproducing at the same time the observed buildup of mETGs at z<~1.(Abridged)
205 - F. S. Liu 2009
We search for ongoing major dry-mergers in a well selected sample of local Brightest Cluster Galaxies (BCGs) from the C4 cluster catalogue. 18 out of 515 early-type BCGs with redshift between 0.03 and 0.12 are found to be in major dry-mergers, which are selected as pairs (or triples) with $r$-band magnitude difference $dm<1.5$ and projected separation $rp<30$ kpc, and showing signatures of interaction in the form of significant asymmetry in residual images. We find that the fraction of BCGs in major dry-mergers increases with the richness of the clusters, consistent with the fact that richer clusters usually have more massive (or luminous) BCGs. We estimate that present-day early-type BCGs may have experienced on average $sim 0.6 (tmerge/0.3Gyr)^{-1}$ major dry-mergers and through this process increases their luminosity (mass) by $15% (tmerge/0.3Gyr)^{-1} (fmass/0.5)$ on average since $z=0.7$, where $tmerge$ is the merging timescale and $fmass$ is the mean mass fraction of companion galaxies added to the central ones. We also find that major dry-mergers do not seem to elevate radio activities in BCGs. Our study shows that major dry-mergers involving BCGs in clusters of galaxies are not rare in the local Universe, and they are an important channel for the formation and evolution of BCGs.
Recent studies have argued that galaxy mergers are not important drivers for the evolution of S0s, on the basis that mergers cannot preserve the coupling between the bulge and disk scale-lengths observed in these galaxies and the lack of correlation of their ratio with the S0 Hubble type. We investigate whether the remnants resulting from collision-less N-body simulations of intermediate and minor mergers onto S0 galaxies evolve fulfilling global structural relations observed between the bulges and disks of these galaxies. Different initial bulge-to-disk ratios of the primary S0 have been considered, as well as different satellite densities, mass ratios, and orbits of the encounter. We have analysed the final morphology of the remnants in images simulating the typical observing conditions of S0 surveys. We derive bulge+disk decompositions of the final remnants to compare their global bulge-to-disk structure with observations. We show that all remnants present undisturbed S0 morphologies according to the prescriptions of specialized surveys. The dry intermediate and minor mergers induce noticeable bulge growth (S0c --> S0b and S0b --> S0a), but affect negligibly to the bulge and disk scale-lengths. Therefore, if a coupling between these two components exists prior to the merger, the encounter does not break this coupling. This fact provides a simple explanation for the lack of correlation between the ratio of bulge and disk scale-lengths and the S0 Hubble type reported by observations. These models prove that dry intermediate and minor mergers can induce global structural evolution within the sequence of S0 Hubble types compatible with observations, meaning that these processes should not be discarded from the evolutionary scenarios of S0s just on the basis of the strong coupling observed between the bulge and disk scale-lengths in these galaxies (abridged).
Hierarchical models predict that massive early-type galaxies (mETGs) derive from the most massive and violent merging sequences occurred in the Universe. However, the role of wet, mixed, and dry major mergers in the assembly of mETGs is questioned by some recent observations. We have developed a semi-analytical model to test the feasibility of the major-merger origin hypothesis for mETGs, just accounting for the effects on galaxy evolution of the major mergers strictly reported by observations. The model proves that it is feasible to reproduce the observed number density evolution of mETGs since z~1, just accounting for the coordinated effects of wet/mixed/dry major mergers. It can also reconcile the different assembly redshifts derived by hierarchical models and by mass downsizing data for mETGs, just considering that a mETG observed at a certain redshift is not necessarily in place since then. The model predicts that wet major mergers have controlled the mETGs buildup since z~1, although dry and mixed mergers have also played an essential role in it. The bulk of this assembly took place at 0.7<z<1, being nearly frozen at z<~0.7 due to the negligible number of major mergers occurred per existing mETG since then. The model suggests that major mergers have been the main driver for the observational migration of mass from the massive end of the blue galaxy cloud to that of the red sequence in the last ~8 Gyr.
The color-magnitude relation of early-type galaxies differs slightly but significantly from a pure power-law, curving downwards at low and upwards at large luminosities (Mr>-20.5 and Mr<-22.5). This remains true of the color-size relation, and is even more apparent with stellar mass (M* < 3x10^10 Msun and M* > 2x10^11 Msun). The upwards curvature at the massive end does not appear to be due to stellar population effects. In contrast, the color-sigma relation is well-described by a single power law. Since major dry mergers change neither the colors nor sigma, but they do change masses and sizes, the clear features observed in the scaling relations with M*, but not with sigma > 150 km/s, suggest that M* > 2x10^11 Msun is the scale above which major dry mergers dominate the assembly history. We discuss three models of the merger histories since z ~ 1 which are compatible with our measurements. In all three models, dry mergers are responsible for the flattening of the color-M* relation at M* > 3x10^10 Msun - wet mergers only matter at smaller masses. At M* > 2 x 10^11 Msun, the merger histories in one model are dominated by major rather than minor dry mergers, as suggested by the axis ratio and color gradient trends. In another, although both major and minor mergers occur at the high mass end, the minor mergers contribute primarily to the formation of the ICL, rather than to the mass growth of the central massive galaxy. A final model assumes that the reddest objects were assembled by a mix of major and minor dry mergers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا