Do you want to publish a course? Click here

Atom Interferometers and the Gravitational Redshift

135   0   0.0 ( 0 )
 Added by Joseph Samuel
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

From the principle of equivalence, Einstein predicted that clocks slow down in a gravitational field. Since the general theory of relativity is based on the principle of equivalence, it is essential to test this prediction accurately. Muller, Peters and Chu claim that a reinterpretation of decade old experiments with atom interferometers leads to a sensitive test of this gravitational redshift effect at the Compton frequency. Wolf et al dispute this claim and adduce arguments against it. In this article, we distill these arguments to a single fundamental objection: an atom is NOT a clock ticking at the Compton frequency. We conclude that atom interferometry experiments conducted to date do not yield such sensitive tests of the gravitational redshift. Finally, we suggest a new interferometric experiment to measure the gravitational redshift, which realises a quantum version of the classical clock paradox.



rate research

Read More

155 - John Ellis , Ville Vaskonen 2020
Atom interferometers (AIs) on earth and in space offer good capabilities for measuring gravitational waves (GWs) in the mid-frequency deciHz band, complementing the sensitivities of the LIGO/Virgo and LISA experiments and enabling probes of possible modifications of the general relativity predictions for GW propagation. We illustrate these capabilities using the projected sensitivities of the AION (terrestrial) and AEDGE (space-based) AI projects, showing that AION could improve the present LIGO/Virgo direct limit on the graviton mass by a factor $sim 40$ to $simeq 10^{-24},$eV, and AEDGE could improve the limit by another order of magnitude. AION and AEDGE will also have greater sensitivity than LIGO to some scenarios for Lorentz violation.
We show that Wolf et al.s 2011 analysis in Class. Quant. Grav. v28, 145017 does not support their conclusions, in particular that there is no redshift effect in atom interferometers except in inconsistent dual Lagrangian formalisms. Wolf et al. misapply both Schiffs conjecture and the results of their own analysis when they conclude that atom interferometers are tests of the weak equivalence principle which only become redshift tests if Schiffs conjecture is invalid. Atom interferometers are direct redshift tests in any formalism.
We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.
We survey the prospective sensitivities of terrestrial and space-borne atom interferometers (AIs) to gravitat- ional waves (GWs) generated by cosmological and astrophysical sources, and to ultralight dark matter. We discuss the backgrounds from gravitational gradient noise (GGN) in terrestrial detectors, and also binary pulsar and asteroid backgrounds in space- borne detectors. We compare the sensitivities of LIGO and LISA with those of the 100m and 1km stages of the AION terrestrial AI project, as well as two options for the proposed AEDGE AI space mission with cold atom clouds either inside or outside the spacecraft, considering as possible sources the mergers of black holes and neutron stars, supernovae, phase transitions in the early Universe, cosmic strings and quantum fluctuations in the early Universe that could have generated primordial black holes. We also review the capabilities of AION and AEDGE for detecting coherent waves of ultralight scalar dark matter.
We investigate leading order deviations from general relativity that violate the Einstein equivalence principle in the gravitational standard model extension. We show that redshift experiments based on matter waves and clock comparisons are equivalent to one another. Consideration of torsion balance tests, along with matter wave, microwave, optical, and Mossbauer clock tests, yields comprehensive limits on spin-independent Einstein equivalence principle-violating standard model extension terms at the $10^{-6}$ level.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا