Extension of Lyapunovs Convexity Theorem to Subranges


Abstract in English

Consider a measurable space with a finite vector measure. This measure defines a mapping of the $sigma$-field into a Euclidean space. According to Lyapunovs convexity theorem, the range of this mapping is compact and, if the measure is atomless, this range is convex. Similar ranges are also defined for measurable subsets of the space. We show that the union of the ranges of all subsets having the same given vector measure is also compact and, if the measure is atomless, it is convex. We further provide a geometrically constructed convex compactum in the Euclidean space that contains this union. The equality of these two sets, that holds for two-dimensional measures, can be violated in higher dimensions.

Download