Do you want to publish a course? Click here

A deep view of the Monoceros ring in the Anticenter direction: clues of its extra-Galactic origin

105   0   0.0 ( 0 )
 Added by Antonio Sollima
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of deep imaging obtained at the CFHT with MegaCam in the Anticenter direction at two different heights above the Galactic disk. We detect the presence of the Monoceros ring in both fields as a conspicuous and narrow Main Sequence feature which dominates star counts over a large portion of the color-magnitude diagram down to g~24. The comparison of the morphology and density of this feature with a large variety of Galactic models excludes the possibility that it can be due to a flare of the Galactic disk, supporting an extra-Galactic origin for this ring-like structure.



rate research

Read More

162 - M. Monguio , F. Figueras , 2012
Aims. The main purpose is to map the radial variation of the stellar space density for the young stellar population in the Galactic anticenter direction in order to understand the structure and location of the Perseus spiral arm. Methods. A uvbyHbeta Stromgren photometric survey covering 16sqrdeg in the anticenter direction was carried out using the Wide Field Camera at the Isaac Newton Telescope. This is the natural photometric system for identifying young stars and obtaining accurate estimates of individual distances and ages. The calibration to the standard system was undertaken using open clusters. Results. We present a main catalog of 35974 stars with all Stromgren indexes and a more extended one with 96980 stars with partial data. The central 8sqrdeg have a limiting magnitude of V<17m, while the outer region reaches V<15.5m. These large samples will permit us to analyze the stellar surface density variation associated to the Perseus arm also to study the properties of the stellar component and the interstellar extinction in the anticenter direction.
The Monoceros Ring (also known as the Galactic Anticenter Stellar Structure) and A13 are stellar overdensities at estimated heliocentric distances of $d sim 11$ kpc and 15 kpc observed at low Galactic latitudes towards the anticenter of our Galaxy. While these overdensities were initially thought to be remnants of a tidally-disrupted satellite galaxy, an alternate scenario is that they are composed of stars from the Milky Way (MW) disk kicked out to their current location due to interactions between a satellite galaxy and the disk. To test this scenario, we study the stellar populations of the Monoceros Ring and A13 by measuring the number of RR Lyrae and M giant stars associated with these overdensities. We obtain low-resolution spectroscopy for RR Lyrae stars in the two structures and measure radial velocities to compare with previously measured velocities for M giant stars in the regions of the Monoceros Ring and A13, to assess the fraction of RR Lyrae to M giant stars ($f_{RR:MG}$) in A13 and Mon/GASS. We perform velocity modeling on 153 RR Lyrae stars (116 in the Monoceros Ring and 37 in A13) and find that both structures have very low $f_{RR:MG}$. The results support a scenario in which stars in A13 and Mon/GASS formed in the MW disk. We discuss a possible association between Mon/GASS, A13, and the Triangulum-Andromeda overdensity based on their similar velocity distributions and $f_{RR:MG}$.
The Monoceros Ring (MRi) structure is an apparent stellar overdensity that has been postulated to entirely encircle the Galactic plane and has been variously described as being due to line-of-sight effects of the Galactic warp and flare or of extragalactic origin (via accretion). Despite being intensely scrutinised in the literature for more than a decade, no studies to-date have been able to definitively uncover its origins. Here we use $N$-body simulations and a genetic algorithm to explore the parameter space for the initial position, orbital parameters and, for the first time, the final location of a satellite progenitor. We fit our models to the latest Pan-STARRS data to determine whether an accretion scenario is capable of producing an in- Plane ring-like structure matching the known parameters of the MRi. Our simulations produce streams that closely match the location, proper motion and kinematics of the MRi structure. However, we are not able to reproduce the mass estimates from earlier studies based on Pan-STARRS data. Furthermore, in contrast with earlier studies our best-fit models are those for progenitors on retrograde orbits. If the MRi was produced by satellite accretion, we find that its progenitor has an initial mass upper limit of ~$10^{10}$M$_odot$ and the remnant is likely located behind the Galactic bulge, making it diffcult to locate observationally. While our models produce realistic MRi-like structures we cannot definitively conclude that the MRi was produced by the accretion of a satellite galaxy.
The activities related to the preparation of the asteroseismic, photometric space mission COROT are described. Photoelectric observations, wide--field CCD photometry, uvbyB calibrations and further time--series have been obtained at different observatories and telescopes. They have been planned to complete the COROT programme in the direction of the galactic Anticenter. In addition to suitable asteroseismic targets covering the different evolutionary stages between ZAMS and TAMS, we discovered several other variable stars, both pulsating and geometrical. We compared results on the incidence of variability in the galactic Center and Anticenter directions. Physical parameters have been obtained and evolutionary tracks fitting them have been calculated. The peculiarities of some individual stars alre pointed out. Paper based on observations collected at the San Pedro Martir, Sierra Nevada, Teide, La Silla, Haute-Provence and Roque de Los Muchachos (Telescopio Nazionale Galileo and Mercator telescopes) observatories.
Using the Pan-STARRS1 survey, we derive limiting magnitude, spatial completeness and density maps that we use to probe the three dimensional structure and estimate the stellar mass of the so-called Monoceros Ring. The Monoceros Ring is an enormous and complex stellar sub-structure in the outer Milky Way disk. It is most visible across the large Galactic Anticenter region, 120 < l < 240 degrees, -30 < b < +40 degrees. We estimate its stellar mass density profile along every line of sight in 2 X 2 degree pixels over the entire 30,000 square degree Pan-STARRS1 survey using the previously developed MATCH software. By parsing this distribution into a radially smooth component and the Monoceros Ring, we obtain its mass and distance from the Sun along each relevant line of sight. The Monoceros Ring is significantly closer to us in the South (6 kpc) than in the North (9 kpc). We also create 2D cross sections parallel to the Galactic plane that show 135 degrees of the Monoceros Ring in the South and 170 degrees of the Monoceros Ring in the North. We show that the Northern and Southern structures are also roughly concentric circles, suggesting that they may be a wave rippling from a common origin. Excluding the Galactic plane, we observe an excess stellar mass of 4 million solar masses across 120 < l < 240 degrees. If we interpolate across the Galactic plane, we estimate that this region contains 8 million solar masses. If we assume (somewhat boldly) that the Monoceros Ring is a set of two Galactocentric rings, its total stellar mass is 60 million solar masses. Finally, if we assume that it is a set of two circles centered at a point 4 kpc from the Galactic center in the anti-central direction, as our data suggests, we estimate its stellar mass to be 40 million solar masses.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا