Computer algebra derives the slow manifold of patch or element dynamics on lattices in two dimensions


Abstract in English

Developments in dynamical systems theory provides new support for the discretisation of pde{}s and other microscale systems. Here we explore the methodology applied to the gap-tooth scheme in the equation-free approach of Kevrekidis in two spatial dimensions. The algebraic detail is enormous so we detail computer algebra procedures to handle the enormity. However, modelling the dynamics on 2D spatial patches appears to require a mixed numerical and algebraic approach that is detailed in this report. Being based upon the computation of residuals, the procedures here may be simply adapted to a wide class of reaction-diffusion equations.

Download