Do you want to publish a course? Click here

Magnetoelastic Coupling in the Phase Diagram of Ba1-xKxFe2As2

140   0   0.0 ( 0 )
 Added by Ray Osborn
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a high resolution neutron diffraction investigation of the coupling of structural and magnetic transitions in Ba1xKxFe2As2. The tetragonal-orthorhombic and antiferromagnetic transitions are suppressed with potassium-doping, falling to zero at x <~ 0.3. However, unlike Ba(Fe1xCox)2As2, the two transitions are first-order and coincident over the entire phase diagram, with a biquadratic coupling of the two order parameters. The phase diagram is refined showing that the onset of superconductivity is at x = 0.133 with all three phases coexisting until x >~ 0.24.



rate research

Read More

We report the results of a systematic investigation of the phase diagram of the iron-based superconductor, Ba1-xKxFe2As2, from x = 0 to x = 1.0 using high resolution neutron and x-ray diffraction and magnetization measurements. The polycrystalline samples were prepared with an estimated compositional variation of Deltax <~ 0.01, allowing a more precise estimate of the phase boundaries than reported so far. At room temperature, Ba1-xKxFe2As2 crystallizes in a tetragonal structure with the space group symmetry of I4/mmm, but at low doping, the samples undergo a coincident first-order structural and magnetic phase transition to an orthorhombic (O) structure with space group Fmmm and a striped antiferromagnet (AF) with space group Fcmmm. The transition temperature falls from a maximum of 139K in the undoped compound to 0K at x = 0.252, with a critical exponent as a function of doping of 0.25(2) and 0.12(1) for the structural and magnetic order parameters, respectively. The onset of superconductivity occurs at a critical concentration of x = 0.130(3) and the superconducting transition temperature grows linearly with x until it crosses the AF/O phase boundary. Below this concentration, there is microscopic phase coexistence of the AF/O and superconducting order parameters, although a slight suppression of the AF/O order is evidence that the phases are competing. At higher doping, superconductivity has a maximum Tc of 38 K at x = 0.4 falling to 3 K at x = 1.0. We discuss reasons for the suppression of the spin-density-wave order and the electron-hole asymmetry in the phase diagram.
353 - U. Welp , R. Xie , A. E. Koshelev 2008
We present a thermodynamic study of the phase diagram of single-crystal Ba1-xKxFe2As2 using specific heat measurements. In zero-magnetic field a clear step in the heat capacity of deltaC/Tc = 0.1 J/f.u.K2 is observed at Tc = 34.6K for a sample with x = 0.4. This material is characterized by extraordinarily high slopes of the upper critical field of dHc2,c/dT= -6.5 T/K and dHc2,ab/dT= -17.4 T/K and a surprisingly low anisotropy of gamma ~ 2.6 near Tc. A consequence of the large field scale is the effective suppression of superconducting fluctuations. Using thermodynamic relations we determine Ginzburg-Landau parameters of kappac ~ 100 and kappaab ~ 260 identifying Ba1-xKxFe2As2 as extreme type-II. The large value of the normalized discontinuity of the slopes of the specific heat at Tc, (Tc/deltaC)times delta(dC/dT)~ 6 indicates strong coupling effects in Ba1-xKxFe2As2.
The lattice dynamics of Ba1-xKxFe2As2 (x = 0.00, 0.27) have been studied by inelastic X-ray scattering measurement at room temperature. K doping induces the softening and broadening of phonon modes in the energy range E = 10-15 meV. Analysis with a Born-von Karman force-constant model indicates that the softening results from reduced interatomic force constants around (Ba,K) sites following the displacement of divalent Ba by monovalent K. The phonon broadening may be explained by the local distortions induced by the K substitution. Extra phonon modes are observed around the wave vector q = (0.5,0,0) at E = 16.5 meV for the x = 0.27 sample. These modes may arise either from the local disorder induced by K doping or from electron-phonon coupling.
It is widely believed that, in contrast to its electron doped counterparts, the hole doped compound Ba1-xKxFe2As2 exhibits a mesoscopic phase separation of magnetism and superconductivity in the underdoped region of the phase diagram. Here, we report a combined high-resolution x-ray powder diffraction and volume sensitive muon spin rotation study of underdoped Ba1-xKxFe2As2 (0 leq x leq 0.25) showing that this paradigm is wrong. Instead we find a microscopic coexistence of the two forms of order. A competition of magnetism and superconductivity is evident from a significant reduction of the magnetic moment and a concomitant decrease of the magneto-elastically coupled orthorhombic lattice distortion below the superconducting phase transition.
Using a differential technique, we have measured the specific heats of polycrystalline Ba1-xKxFe2As2 samples with x=0, 0.1 and 0.3, between 2K and 380K and in magnetic fields 0 to 13 Tesla. From this data we have determined the electronic specific heat coefficient, gamma, over the entire range for the three samples. The most heavily doped sample (x=0.3) exhibits a large superconducting anomaly Delta gamma(Tc)~48mJ/molK^2 at Tc=35K, and we determine the energy gap, condensation energy, superfluid density and coherence length. In the normal state for the x=0.3 sample, gamma~47 mJ/molK^2 is constant from Tc to 380K. In the parent compound (x=0) there is a large almost first order anomaly at the spin density wave (SDW) transition at To=136K. This anomaly is smaller and broader for x=0.1. At low T, gamma is strongly reduced by the SDW gap for both x=0 and 0.1, but above To, gamma for all three samples are similar.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا