Do you want to publish a course? Click here

Radial distribution of stars, gas and dust in SINGS galaxies. III. Modeling the evolution of the stellar component in galaxy disks

150   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

(Abridged) We analyze the evolution of 42 spiral galaxies in the Spitzer Infrared Nearby Galaxies Survey, using extinction-corrected UV, optical and near-infrared radial profiles to probe the emission of stars of different ages as a function of radius. We fit these profiles with models that describe the chemical and spectro-photometric evolution of spiral disks within a self-consistent framework. These backward models succesfully reproduce the multi-wavelength profiles of our galaxies, except the UV profiles of some early-type disks. From the model fitting we infer the maximum circular velocity of the rotation curve (Vc) and the dimensionless spin parameter (lambda). The values of Vc are in good agreement with the velocities measured in HI rotation curves. While our sample is not volume-limited, the resulting distribution of spins is close to the lognormal function obtained in cosmological N-body simulations, peaking at ~0.03 regardless of the total halo mass. We do not find any evident trend between spin and Hubble type, besides an increase in the scatter for the latest types. According to the model, galaxies evolve along a roughly constant mass-size relation, increasing their scale-lengths as they become more massive. The radial scale-length of most disks in our sample seems to have increased at a rate of 0.05-0.06 kpc/Gyr, being now 20-25% larger than at z=1.



rate research

Read More

We present a detailed analysis of the radial distribution of dust properties in the SINGS sample, performed on a set of UV, IR and HI surface brightness profiles, combined with published molecular gas profiles and metallicity gradients. The internal extinction, derived from the TIR-to-FUV luminosity ratio, decreases with radius, and is larger in Sb-Sbc galaxies. The TIR-to-FUV ratio correlates with the UV spectral slope beta, following a sequence shifted to redder UV colors with respect to that of starbursts. The star formation history (SFH) is identified as the main driver of this departure. We have also derived radial profiles of the total dust mass surface density, the fraction of the dust mass contributed by PAHs, the fraction of the dust mass heated by very intense starlight and the intensity of the radiation field heating the grains. The dust profiles are exponential, their radial scale-length being constant from Sb to Sd galaxies (only ~10% larger than the stellar scale-length). Many S0/a-Sab galaxies have central depressions in their dust radial distributions. The PAH abundance increases with metallicity for 12+log(O/H)<9, and at larger metallicities the trend flattens and even reverses, with the SFH being a plausible underlying driver for this behavior. The dust-to-gas ratio is also well correlated with metallicity and therefore decreases with galactocentric radius.
We present ultraviolet through far-infrared surface brightness profiles for the 75 galaxies in the Spitzer Infrared Nearby Galaxies Survey (SINGS). The imagery used to measure the profiles includes GALEX UV data, optical images from KPNO, CTIO and SDSS, near-IR data from 2MASS, and mid- and far-infrared images from Spitzer. Along with the radial profiles, we also provide multi-wavelength asymptotic magnitudes and several non-parametric indicators of galaxy morphology: the concentration index (C_42), the asymmetry (A), the Gini coefficient (G) and the normalized second-order moment of the brightest 20% of the galaxys flux (M_20). Our radial profiles show a wide range of morphologies and multiple components (bulges, exponential disks, inner and outer disk truncations, etc.) that vary not only from galaxy to galaxy but also with wavelength for a given object. In the optical and near-IR, the SINGS galaxies occupy the same regions in the C_42-A-G-M_20 parameter space as other normal galaxies in previous studies. However, they appear much less centrally concentrated, more asymmetric and with larger values of G when viewed in the UV (due to star-forming clumps scattered across the disk) and in the mid-IR (due to the emission of Polycyclic Aromatic Hydrocarbons at 8.0 microns and very hot dust at 24 microns).
We use deep Herschel PACS and SPIRE observations in GOODSS, GOODSN and COSMOS to estimate the average dust mass (Mdust) of galaxies on a redshift-stellar mass (Mstar)-SFR grid. We study the scaling relations between Mdust, Mstar and SFR at z<=2.5. No clear evolution of Mdust is observed at fixed SFR and Mstar. We find a tight correlation between SFR and Mdust, likely a consequence of the Schmidt-Kennicutt (S-K) law. The Mstar-Mdust correlation observed by previous works flattens or sometimes disappears when fixing the SFR. Most of it likely derives from the combination of the Mdust-SFR and Mstar-SFR correlations. We then investigate the gas content as inferred by converting Mdust by assuming that the dust/gas ratio scales linearly with the gas metallicity. All galaxies in the sample follow, within uncertainties, the same SFR-Mgas relation (integrated S-K law), which broadly agrees with CO-based results for the bulk of the population, despite the completely different approaches. The majority of galaxies at z~2 form stars with an efficiency (SFE=SFR/Mgas) ~5 times higher than at z~0. It is not clear what fraction of such variation is an intrinsic redshift evolution and what fraction arises from selection effects. The gas fraction (fgas) decreases with Mstar and increases with SFR, and does not evolve with z at fixed Mstar and SFR. We explain these trends by introducing a universal relation between fgas, Mstar and SFR, non-evolving out to z~2.5. Galaxies move across this relation as their gas content evolves in time. We use the 3D fundamental fgas-Mstar-SFR relation and the redshift evolution of the Main Sequence to estimate the evolution of fgas in the average population of galaxies as a function of z and Mstar, and we find evidence a downsizing scenario.
By combining Herschel-SPIRE data with archival Spitzer, HI, and CO maps, we investigate the spatial distribution of gas and dust in the two famous grand-design spirals M99 and M100 in the Virgo cluster. Thanks to the unique resolution and sensitivity of the Herschel-SPIRE photometer, we are for the first time able to measure the distribution and extent of cool, submillimetre (submm)-emitting dust inside and beyond the optical radius. We compare this with the radial variation in both the gas mass and the metallicity. Although we adopt a model-independent, phenomenological approach, our analysis provides important insights. We find the dust extending to at least the optical radius of the galaxy and showing breaks in its radial profiles at similar positions as the stellar distribution. The colour indices f350/f500 and f250/f350 decrease radially consistent with the temperature decreasing with radius. We also find evidence of an increasing gas to dust ratio with radius in the outer regions of both galaxies.
The presence of dust strongly affects the way we see galaxies and also the chemical abundances we measure in gas. It is therefore important to study he chemical evolution of galaxies by taking into account dust evolution. We aim at performing a detailed study of abundance ratios of high redshift objects and their dust properties. We focus on Lyman-Break galaxies (LBGs) and Quasar (QSO) hosts and likely progenitors of low- and high-mass present-day elliptical galaxies, respectively. We have adopted a chemical evolution model for elliptical galaxies taking account the dust production from low and intermediate mass stars, supernovae Ia, supernovae II, QSOs and both dust destruction and accretion processes. By means of such a model we have followed the chemical evolution of ellipticals of different baryonic masses. Our model complies with chemical downsizing. We made predictions for the abundance ratios versus metallicity trends for models of differing masses that can be used to constrain the star formation rate, initial mass function and dust mass in observed galaxies. We predict the existence of a high redshift dust mass-stellar mass relationship. We have found a good agreement with the properties of LBGs if we assume that they formed at redshift z=2-4. In particular, a non-negligible amount of dust is needed to explain the observed abundance pattern. We studied the QSO SDSS J114816, one of the most distant QSO ever observed (z=6.4), and we have been able to reproduce the amount of dust measured in this object. The dust is clearly due to the production from supernovae and the most massive AGB stars as well as from the grain growth in the interstellar medium. The QSO dust is likely to dominate only in the very central regions of the galaxies and during the early development of the galactic wind.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا