Quantum Simulation of the Majorana Equation and Unphysical Operations


Abstract in English

A quantum simulator is a device engineered to reproduce the properties of an ideal quantum model. It allows the study of quantum systems that cannot be efficiently simulated on classical computers. While a universal quantum computer is also a quantum simulator, only particular systems have been simulated up to now. Still, there is a wealth of successful cases, such as spin models, quantum chemistry, relativistic quantum physics and quantum phase transitions. Here, we show how to design a quantum simulator for the Majorana equation, a non-Hamiltonian relativistic wave equation that might describe neutrinos and other exotic particles beyond the standard model. The simulation demands the implementation of charge conjugation, an unphysical operation that opens a new front in quantum simulations, including the discrete symmetries associated with complex conjugation and time reversal. Finally, we show how to implement this general method in trapped ions.

Download