No Arabic abstract
The possibility to draw links between the isospin properties of nuclei and the structure of compact stars is a stimulating perspective. In order to pursue this objective on a sound basis, the correlations from which such links can be deduced have to be carefully checked against model dependence. Using a variety of nuclear effective models and a microscopic approach, we study the relation between the predictions of a given model and those of a Taylor density development of the corresponding equation of state: this establishes to what extent a limited set of phenomenological constraints can determine the core-crust transition properties. From a correlation analysis we show that a) the transition density $rho_t$ is mainly correlated with the symmetry energy slope $L$, b) the proton fraction $Y_{p,t}$ with the symmetry energy and symmetry energy slope $(J,L)$ defined at saturation density, or, even better, with the same quantities defined at $rho=0.1$ fm$^{-3}$, and c) the transition pressure $P_t$ with the symmetry energy slope and curvature $(J,K_{rm sym})$ defined at $rho=0.1$ fm$^{-3}$.
The slope of the nuclear symmetry energy at saturation density $L$ is pointed out as a crucial quantity to determine the mass and width of neutron-star crusts. This letter clarifies the relation between $L$ and the core-crust transition. We confirm that the transition density is soundly correlated with $L$ despite differences between models, and we propose a clear understanding of this correlation based on a generalised liquid drop model. Using a large number of nuclear models, we evaluate the dispersion affecting the correlation between the transition pressure $P_t$ and $L$. From a detailed analysis it is shown that this correlation is weak due to a cancellation between different terms. The correlation between the isovector coefficients $K_{rm sym}$ and $L$ plays a crucial role in this discussion.
Background: The nuclear symmetry energy $E_{sym}(rho)$ encodes information about the energy necessary to make nuclear systems more neutron-rich. While its slope parameter L at the saturation density $rho_0$ of nuclear matter has been relatively well constrained by recent astrophysical observations and terrestrial nuclear experiments, its curvature $K_{rm{sym}}$ characterizing the $E_{sym}(rho)$ around $2rho_0$ remains largely unconstrained. Over 520 calculations for $E_{sym}(rho)$ using various nuclear theories and interactions in the literature have predicted several significantly different $K_{rm{sym}}-L$ correlations. Purpose: If a unique $K_{rm{sym}}-L$ correlation of $E_{sym}(rho)$ can be firmly established, it will enable us to progressively better constrain the high-density behavior of $E_{sym}(rho)$ using the available constraints on its slope parameter L. We investigate if and by how much the different $K_{rm{sym}}-L$ correlations may affect neutron star observables. Method: A meta-model of nuclear Equation of States (EOSs) with three representative $K_{rm{sym}}-L$ correlation functions is used to generate multiple EOSs for neutron stars. We then examine effects of the $K_{rm{sym}}-L$ correlation on the crust-core transition density and pressure as well as the radius and tidal deformation of canonical neutron stars. Results:The $K_{rm{sym}}-L$ correlation affects significantly both the crust-core transition density and pressure. It also has strong imprints on the radius and tidal deformability of canonical neutron stars especially at small L values. The available data from LIGO/VIRGO and NICER set some useful limits for the slope L but can not distinguish the three representative $K_{rm{sym}}-L$ correlations considered.
The hadron-quark phase transition in the core of massive neutron stars is studied with a newly constructed two-phase model. For nuclear matter, a nonlinear Walecka type model with general nucleon-meson and meson-meson couplings, recently calibrated by Steiner, Hemper and Fischer, is taken. For quark matter, a modified Polyakov-Nambu--Jona-Lasinio (mPNJL) model, which gives consistent results with lattice QCD data, is used. Most importantly, we introduce an isoscalar-vector interaction in the description of quark matter, and we study its influence on the hadron-quark phase transition in the interior of massive neutron stars. With the constraints of neutron star observations, our calculation shows that the isoscalar-vector interaction between quarks is indispensable if massive hybrids star exist in the universe, and its strength determines the onset density of quark matter, as well as the mass-radius relations of hybrid stars. Furthermore, as a connection with heavy-ion-collision experiments we give some discussions about the strength of isoscalar-vector interaction and its effect on the signals of hadron-quark phase transition in heavy-ion collisions, in the energy range of the NICA at JINR-Dubna and FAIR at GSI-Darmstadt facilities.
It is commonly believed that the magnetic field threading a neutron star provides the ultimate mechanism (on top of fluid viscosity) for enforcing long-term corotation between the slowly spun down solid crust and the liquid core. We show that this argument fails for axisymmetric magnetic fields with closed field lines in the core, the commonly used `twisted torus field being the most prominent example. The failure of such magnetic fields to enforce global crust-core corotation leads to the development of a persistent spin lag between the core region occupied by the closed field lines and the rest of the crust and core. We discuss the repercussions of this spin lag for the evolution of the magnetic field, suggesting that, in order for a neutron star to settle to a stable state of crust-core corotation, the bulk of the toroidal field component should be deposited into the crust soon after the neutron stars birth.
Using relativistic mean-field models, the formation of clusterized matter, as the one expected to exist in the inner crust of neutron stars, is determined under the effect of strong magnetic fields. As already predicted from a calculation of the unstable modes resulting from density fluctuations at subsaturation densities, we confirm in the present work that for magnetic field intensities of the order of $approx 5 times 10^{16}$ G to $5 times 10^{17}$ G, pasta phases may occur for densities well above the zero-field crust-core transition density. This confirms that the extension of the crust may be larger than expected. It is also verified that the equilibrium structure of the clusterized matter is very sensitive to the intensity of the magnetic fields. As a result, the decay of the magnetic field may give rise to internal stresses which may result on the yield and fracture of the inner crust lattice.