Robust Distributed Routing in Dynamical Flow Networks - Part I: Locally Responsive Policies and Weak Resilience


Abstract in English

Robustness of distributed routing policies is studied for dynamical flow networks, with respect to adversarial disturbances that reduce the link flow capacities. A dynamical flow network is modeled as a system of ordinary differential equations derived from mass conservation laws on a directed acyclic graph with a single origin-destination pair and a constant inflow at the origin. Routing policies regulate the way the inflow at a non-destination node gets split among its outgoing links as a function of the current particle density, while the outflow of a link is modeled to depend on the current particle density on that link through a flow function. The dynamical flow network is called partially transferring if the total inflow at the destination node is asymptotically bounded away from zero, and its weak resilience is measured as the minimum sum of the link-wise magnitude of all disturbances that make it not partially transferring. The weak resilience of a dynamical flow network with arbitrary routing policy is shown to be upper-bounded by the networks min-cut capacity, independently of the initial flow conditions. Moreover, a class of distributed routing policies that rely exclusively on local information on the particle densities, and are locally responsive to that, is shown to yield such maximal weak resilience. These results imply that locality constraints on the information available to the routing policies do not cause loss of weak resilience. Some fundamental properties of dynamical flow networks driven by locally responsive distributed policies are analyzed in detail, including global convergence to a unique limit flow.

Download